

BEGINNING

ASP.NET SECURITY

INTRODUCTION . xxi

CHAPTER 1 Why Web Security Matters . 1

PART I THE ASP.NET SECURITY BASICS

CHAPTER 2 How the Web Works . 15

CHAPTER 3 Safely Accepting User Input . 39

CHAPTER 4 Using Query Strings, Form Fields, Events,

and Browser Information . 65

CHAPTER 5 Controlling Information . 87

CHAPTER 6 Keeping Secrets Secret — Hashing and Encrypton. 117

PART II SECURING COMMON ASP.NET TASKS

CHAPTER 7 Adding Usernames and Passwords . 151

CHAPTER 8 Securely Accessing Databases . 185

CHAPTER 9 Using the File System . 207

CHAPTER 10 Securing XML . 225

PART III ADVANCED ASP.NET SCENARIOS

CHAPTER 11 Sharing Data with Windows Communication Foundation 255

CHAPTER 12 Securing Rich Internet Applications . 289

CHAPTER 13 Understanding Code Access Security . 315

CHAPTER 14 Securing Internet Information Server (IIS) . 329

CHAPTER 15 Third-Party Authentication . 359

CHAPTER 16 Secure Development with the ASP.NET MVC Framework 385

INDEX . 399

�

�

�

BEGINNING

ASP.NET Security

BEGINNING

ASP.NET Security

Barry Dorrans

A John Wiley and Sons, Ltd., Publication

Beginning ASP.NET Security

This edition fi rst published 2010
© 2010 John Wiley & Sons, Ltd
Registered offi ce
John Wiley & Sons Ltd,
The Atrium, Southern Gate,
Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offi ces, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identifi ed as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

ISBN: 978-0-470-74365-2

A catalogue record for this book is available from the British Library

Set in 9.5/12 Sabon Roman at MacMillan Publishing Solutions

Printed in Great Britain by Bell and Bain, Glasgow

To mum, who asked me more about the book's progress

almost as often as the long-suffering Wrox staff did.

And to Emilicon, who had to put up with my stress

and frustration when the words didn’t come.

 ABOUT THE AUTHOR

BARRY DORRANS is a consultant based in the United
Kingdom, a public speaker, and Microsoft MVP in the
“Visual Tools — Security” category. His development
experience started out with a Sinclair ZX Spectrum,
graduating through IBM PCs, minicomputers,
mainframes, C++, SQL, Visual Basic, and the .NET
framework. His approach to development and speaking
blends humor with the paranoia suitable for considering
security. In recent years, Barry has mentored developers
through the full lifecycle of ASP.NET development,
worked on the SubText Open Source blogging platform,
and started his own Open Source project for Information
Card identity providers, SharpSTS. Born in Northern
Ireland, he still misses the taste of real Guinness.

ACKNOWLEDGMENTS

CLICHÉD THOUGH IT IS, there are too many people to thank individually. I would like to specifi cally
acknowledge the help and inspiration of two fellow Microsoft MVPs — Dominick Baier (who has
been my main sounding board) and Alex Smolen (my Technical Editor, who has been there to catch
my mistakes and point out what I missed).

I’d also like to thank at those folks in various Microsoft teams who have put up with my questions,
queries, and misunderstandings with good humor over the years, and during the writing process,
especially the UK DPE team, without whose help I doubt I’d learn anywhere near as much.

Part of the confi dence to write this book has come from my involvement with the UK developer
community, especially the DeveloperDeveloperDeveloper conferences. It would be impossible to
thank everyone who has let me speak, or come along to listen, but I would like to give special
thanks to community leaders and fellow authors Craig Murphy and Phil Winstanley for their
unfl inching support of both my speaking engagements and their advice, as well as to
Trevor Dwyer, who bullied me into my fi rst very conference presentation all those years ago.

CREDITS

ASSOCIATE PUBLISHER

Chris Webb

ASSISTANT EDITOR

Colleen Goldring

PUBLISHING ASSISTANT

Ellie Scott

DEVELOPMENT EDITOR

Kevin Shafer

TECHNICAL EDITOR

Alex Smolen

PROJECT EDITOR

Juliet Booker

CONTENT EDITOR

Juliet Booker

COPY EDITOR

Richard Walshe

SENIOR MARKETING MANAGER

Louise Breinholt

MARKETING EXECUTIVE

Kate Batchelor

COMPOSITOR

Macmillan Publishing Solutions, Chennai, India

PROOF READER

Alex Grey

INDEXER

Jack Lewis – j&j Indexing

COVER IMAGE

© technotr/istockphoto

VP CONSUMER AND TECHNOLOGY PUBLISHING

DIRECTOR

Michelle Leete

ASSOCIATE PRODUCTION DIRECTOR BOOK

CONTENT MANAGEMENT

Martin Tribe

CONTENTS

ACKNOWLEDGMENTS xi

INTRODUCTION xxi

CHAPTER 1: WHY WEB SECURITY MATTERS 1

Anatomy of an Attack 2

Risks and Rewards 5

Building Security from the Ground Up 6

Defense in Depth 8

Never Trust Input 8

Fail Gracefully 8

Watch for Attacks 8

Use Least Privilege 8

Firewalls and Cryptography Are Not a Panacea 9

Security Should Be Your Default State 9

Code Defensively 10

The OWASP Top Ten 10

Moving Forward 12

Checklists 12

PART I: THE ASP.NET SECURITY BASICS

CHAPTER 2: HOW THE WEB WORKS 15

Examining HTTP 15

Requesting a Resource 16

Responding to a Request 18

Sniffi ng HTTP Requests and Responses 19

Understanding HTML Forms 22

Examining How ASP.NET Works 30

Understanding How ASP.NET Events Work 30

Examining the ASP.NET Pipeline 34

Writing HTTP Modules 34

Summary 37

xiv

CONTENTS

CHAPTER 3: SAFELY ACCEPTING USER INPUT 39

Defi ning Input 39

Dealing with Input Safely 41

Echoing User Input Safely 41

Mitigating Against XSS 45

The Microsoft Anti-XSS Library 47

The Security Run-time Engine 48

Constraining Input 50

Protecting Cookies 52

Validating Form Input 53

Validation Controls 55

Standard ASP.NET Validation Controls 57

Using the RequiredFieldValidator 58

Using the RangeValidator 58

Using the RegularExpressionValidator 59

Using the CompareValidator 59

Using the CustomValidator 60

Validation Groups 61

A Checklist for Handling Input 63

CHAPTER 4: USING QUERY STRINGS, FORM FIELDS,
EVENTS, AND BROWSER INFORMATION 65

Using the Right Input Type 65

Query Strings 66

Form Fields 68

Request Forgery and How to Avoid It 69

Mitigating Against CSRF 71

Protecting ASP.NET Events 81

Avoiding Mistakes with Browser Information 83

A Checklist for Query Strings, Forms, Events,
and Browser Information 85

CHAPTER 5: CONTROLLING INFORMATION 87

Controlling ViewState 87

Validating ViewState 89

Encrypting ViewState 91

Protecting Against ViewState One-Click Attacks 92

Removing ViewState from the Client Page 94

Disabling Browser Caching 94

xv

CONTENTS

Error Handling and Logging 95

Improving Your Error Handling 97

Watching for Special Exceptions 98

Logging Errors and Monitoring Your Application 99

Using the Windows Event Log 99

Using Email to Log Events 100

Using ASP.NET Tracing 102

Using Performance Counters 104

Using WMI Events 107

Another Alternative: Logging Frameworks 108

Limiting Search Engines 112

Controlling Robots with a Metatag 113

Controlling Robots with robots.txt 113

Protecting Passwords in Confi g Files 114

A Checklist for Query Strings, Forms, Events, and
Browser Information 116

CHAPTER 6: KEEPING SECRETS SECRET — HASHING
AND ENCRYPTION 117

Protecting Integrity with Hashing 118

Choosing a Hashing Algorithm 119

Protecting Passwords with Hashing 120

Salting Passwords 121

Generating Secure Random Numbers 121

Encrypting Data 124

Understanding Symmetric Encryption 124

Protecting Data with Symmetric Encryption 125

Sharing Secrets with Asymmetric Encryption 133

Using Asymmetric Encryption without Certifi cates 134

Using Certifi cates for Asymmetric Encryption 136

Getting a Certifi cate 136

Using the Windows DPAPI 147

A Checklist for Encryption 148

PART II: SECURING COMMON ASP.NET TASKS

CHAPTER 7: ADDING USERNAMES AND PASSWORDS 151

Authentication and Authorization 152

Discovering Your Own Identity 152

Adding Authentication in ASP.NET 154

xvi

CONTENTS

Using Forms Authentication 154

Confi guring Forms Authentication 154

Using SQL as a Membership Store 158

Creating Users 160

Examining How Users Are Stored 163

Confi guring the Membership Settings 164

Creating Users Programmatically 166

Supporting Password Changes and Resets 167

Windows Authentication 167

Confi guring IIS for Windows Authentication 168

Impersonation with Windows Authentication 171

Authorization in ASP.NET 172

Examining <allow> and <deny> 173

Role-Based Authorization 174

Confi guring Roles with Forms-Based Authentication 174

Using the Confi guration Tools to Manage Roles 176

Managing Roles Programmatically 177

Managing Role Members Programmatically 179

Roles with Windows Authentication 179

Limiting Access to Files and Folders 180

Checking Users and Roles Programmatically 183

Securing Object References 183

A Checklist for Authentication and Authorization 184

CHAPTER 8: SECURELY ACCESSING DATABASES 185

Writing Bad Code: Demonstrating SQL Injection 186

Fixing the Vulnerability 190

More Security for SQL Server 194

Connecting Without Passwords 194

SQL Permissions 196

Adding a User to a Database 197

Managing SQL Permissions 197

Groups and Roles 197

Least Privilege Accounts 198

Using Views 198

SQL Express User Instances 200

Drawbacks of the VS Built-in Web Server 200

Dynamic SQL Stored Procedures 200

Using SQL Encryption 201

Encrypting by Pass Phrase 202

SQL Symmetric Encryption 202

xvii

CONTENTS

SQL Asymmetric Encryption 204

Calculating Hashes and HMACs in SQL 205

A Checklist for Securely Accessing Databases 205

CHAPTER 9: USING THE FILE SYSTEM 207

Accessing Existing Files Safely 207

Making Static Files Secure 213

Checking That Your Application Can Access Files 215

Making a File Downloadable and Setting Its Name 216

Adding Further Checks to File Access 216

Adding Role Checks 216

Anti-Leeching Checks 217

Accessing Files on a Remote System 218

Creating Files Safely 218

Handling User Uploads 220

Using the File Upload Control 221

A Checklist for Securely Accessing Files 224

CHAPTER 10: SECURING XML 225

Validating XML 225

Well-Formed XML 226

Valid XML 226

XML Parsers 227

Querying XML 234

Avoiding XPath Injection 236

Securing XML Documents 237

Encrypting XML Documents 238

Using a Symmetric Encryption Key with XML 238

Using an Asymmetric Key Pair to Encrypt and Decrypt XML 242

Using an X509 Certifi cate to Encrypt and Decrypt XML 245

Signing XML Documents 246

A Checklist for XML 252

PART III: ADVANCED ASP.NET SCENARIOS

CHAPTER 11: SHARING DATA WITH WINDOWS
COMMUNICATION FOUNDATION 255

Creating and Consuming WCF Services 256

Security and Privacy with WCF 259

Transport Security 259

xviii

CONTENTS

Message Security 260

Mixed Mode 261

Selecting the Security Mode 261

Choosing the Client Credentials 262

Adding Security to an Internet Service 263

Signing Messages with WCF 274

Logging and Auditing in WCF 277

Validating Parameters Using Inspectors 280

Using Message Inspectors 283

Throwing Errors in WCF 286

A Checklist for Securing WCF 287

CHAPTER 12: SECURING RICH INTERNET APPLICATIONS 289

RIA Architecture 290

Security in Ajax Applications 290

The XMLHttpRequest Object 291

The Ajax Same Origin Policy 292

The Microsoft ASP.NET Ajax Framework 293

Examining the UpdatePanel 293

Examining the ScriptManager 296

Security Considerations with UpdatePanel and ScriptManager 299

Security in Silverlight Applications 301

Understanding the CoreCLR Security Model 301

Using the HTML Bridge 302

Controlling Access to the HTML DOM 303

Exposing Silverlight Classes and Members to the DOM 304

Accessing the Local File System 306

Using Cryptography in Silverlight 309

Accessing the Web and Web Services with Silverlight 312

Using ASP.NET Authentication and Authorization in
Ajax and Silverlight 313

A Checklist for Securing Ajax and Silverlight 314

CHAPTER 13: UNDERSTANDING CODE ACCESS SECURITY 315

Understanding Code Access Security 316

Using ASP.NET Trust Levels 318

Demanding Minimum CAS Permissions 319

Asking and Checking for CAS Permissions 320

Testing Your Application Under a New Trust Level 321

Using the Global Assembly Cache to Run Code Under Full Trust 324

xix

CONTENTS

.NET 4 Changes for Trust and ASP.NET 327

A Checklist for Code not Under Full Trust 328

CHAPTER 14: SECURING INTERNET INFORMATION
SERVER (IIS) 329

Installing and Confi guring IIS7 330

IIS Role Services 331

Removing Global Features for an Individual Web Site 335

Creating and Confi guring Application Pools 335

Confi guring Trust Levels in IIS 337

Locking Trust Levels 338

Creating Custom Trust Levels 339

Filtering Requests 340

Filtering Double-Encoded Requests 341

Filtering Requests with Non-ASCII Characters 341

Filtering Requests Based on File Extension 341

Filtering Requests Based on Request Size 342

Filtering Requests Based on HTTP Verbs 342

Filtering Requests Based on URL Sequences 343

Filtering Requests Based on Request Segments 343

Filtering Requests Based on a Request Header 343

Status Codes Returned to Denied Requests 344

Using Log Parser to Mine IIS Log Files 344

Using Certifi cates 351

Requesting an SSL Certifi cate 352

Confi guring a Site to Use HTTPS 354

Setting up a Test Certifi cation Authority 354

A Checklist for Securing Internet Information Server (IIS) 357

CHAPTER 15: THIRD-PARTY AUTHENTICATION 359

A Brief History of Federated Identity 359

Using the Windows Identity Foundation to accept SAML
and Information Cards 362

Creating a “Claims-Aware” Web Site 363

Accepting Information Cards 365

Working with a Claims Identity 373

Using OpenID with Your Web Site 374

Using Windows Live ID with Your Web Site 379

A Strategy for Integrating Third-Party Authentication with
Forms Authentication 382

Summary 383

xx

CONTENTS

CHAPTER 16: SECURE DEVELOPMENT WITH THE ASP.NET
MVC FRAMEWORK 385

MVC Input and Output 386

Protecting Yourself Against XSS 386

Protecting an MVC Application Against CSRF 387

Securing Model Binding 387

Providing Validation for and Error Messages from Your Model 389

Authentication and Authorization with ASP.NET MVC 392

Authorizing Actions and Controllers 392

Protecting Public Controller Methods 393

Discovering the Current User 393

Customizing Authorization with an Authorization Filter 394

Error Handling with ASP.NET MVC 395

A Checklist for Secure Development with the ASP.NET
MVC Framework 398

INDEX 399

 INTRODUCTION

 OVER THE PAST SEVERAL YEARS, I’ve been regularly presenting on security in .NET at conferences
and user groups. One of the joys of these presentations is that you know when you ’ve taught
someone something new. At some point during the presentation, you can see one or two members of
the audience starting to look very worried. Security is a diffi cult topic to discuss. Often, developers
know they must take security into account during their development life cycle, but do not know
what they must look for, and can be too timid to ask about the potential threats and attacks that
their applications could be subjected to.

This book provides a practical introduction to developing securely for ASP.NET. Rather than
approaching security from a theoretical direction, this book shows you examples of how everyday
code can be attacked, and then takes you through the steps you must follow to fi x the problems.

This book is different from most others in the Wrox Beginning series. You will not be
building an application, but rather, each chapter is based upon a task a Web site may need to
perform — accepting input, accessing databases, keeping secrets, and so on. This approach means
that most chapters can be read in isolation as you encounter the need to support these tasks during
your application development. Instead of exercises, many chapters will end with a checklist for the
particular task covered in the chapter discussions, which you can use during your development as a
reminder, and as a task list to ensure that you have considered and addressed each potential fl aw or
vulnerability.

When you decide to test your applications for vulnerabilities, be sure that you run any tests against
a development installation of your site. If you have a central development server, then ensure that
you inform whoever manages the server that you will be performing security testing. Never run
any tests against a live installation of your application, or against a Web site that is not under your
control.

Be aware that your country may have specifi c laws regarding encryption. Using some of the methods
outlined in this book may be restricted, or even illegal, depending on where you live.

 WHO THIS BOOK IS FOR

This book is for developers who already have a solid understanding of ASP.NET, but who need
to know about the potential issues and common security vulnerabilities that ASP.NET can have.
The book does not teach you how to construct and develop an ASP.NET Web site, but instead will
expand upon your existing knowledge, and provide you with the understanding and tools to secure
your applications against attackers.

INTRODUCTION

 HOW THIS BOOK IS STRUCTURED

This book is divided into three very broad sections, each containing several chapters.

 Chapter 1, “Why Web Security Matters, ” begins with a general introduction to Web security,
illustrates an attack on an application, and introduces some general principles for secure
development.

 Part I, “The ASP.NET Security Basics, ” addresses everyday common functions of an ASP.NET Web
site — the functions that can expose your application, and how you can secure them. The following
chapters are included in this section of the book:

 Chapter 2, “How the Web Works, ” explains some aspects of how HTTP and ASP.NET
Web Forms works, shows you how to examine requests and responses, and examines how
the ASP.NET pipeline works.

 Chapter 3, “Safely Accepting User Input, ” discusses inputs to your application, how these
can be used to attack your application, and how you should protect yourself against this.

 Chapter 4, “Using Query Strings, Form Fields, Events, and Browser Information, ” covers
parameters, query strings, and forms, and examines how you can safely use them.

 Chapter 5, “Controlling Information, ” takes a look at how information can leak from
your application, the dangers this exposes, and how you can lock information away from
accidental exposure.

 Chapter 6, “Keeping Secrets Secret — Hashing and Encryption, ” delves into the basics
of cryptography — showing you how to encrypt and decrypt data, and sign it to protect
against changes.

 Part II, “Securing Common ASP.NET Tasks, ” focuses on common tasks for applications. The
following chapters are included in this section of the book:

 Chapter 7, “Adding Usernames and Passwords, ” shows you how to add usernames and
passwords to your application.

 Chapter 8, “Securely Accessing Databases, ” demonstrates the problems with accessing
databases, and how you can protect yourself against common attacks related to them.

 Chapter 9, “Using the File System, ” talks about the fi le system, and how your application
can safely use it.

 Chapter 10, “Securing XML, ” looks at XML, how you can validate it, and how to safely
query XML data.

 Part III, “Advanced ASP.NET Scenarios, ” looks at more advanced topics that not every application
may use. The following chapters are included in this section of the book:

 Chapter 11, “Sharing Data with Windows Communication Foundation, ” covers Web
services, and the risks can they expose.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Introduction

 Chapter 12, “Securing Rich Internet Applications, ” provides an introduction to Rich
Internet Applications, and shows you how you can safely utilize Ajax and Silverlight to
communicate with your server.

 Chapter 13, “Understanding Code Access Security, ” provides you with some of the security
underpinnings of the .NET run -time, and shows how you can use them within ASP.NET.

 Chapter 14, “Securing Internet Information Server (IIS), ” is a brief introduction to
securing your infrastructure, enabling you to appreciate how IIS can act as a fi rst line of
defense.

 Chapter 15, “Third -Party Authentication, ” looks at bringing third -party authentication
systems into your application, and discusses claims -based authentication, OpenID, and
Windows Live ID.

 Chapter 16, “Secure Development with the ASP.NET MVC Framework, ” provides a
summary of the ways that an ASP.NET MVC application can be protected against attacks.

Every effort has been made to make each chapter as self -contained as possible. There is no need to
read each chapter in order. Instead, you can use the instructions in each chapter to secure each part
of your Web site as you develop it. Some of the later chapters will contain references to previous
chapters and explanations — these are clearly marked.

 WHAT YOU NEED TO USE THIS BOOK

 This book was written using version 3.5 of the .NET Framework and Visual Studio 2008 on both
Windows Vista and Windows Server 2008. The sample code has been verifi ed to work with .NET
3.5 and .NET 3.5 SP1. To run all of the samples, you will need the following:

 Windows Vista or Windows Server 2008

 Visual Studio 2008

Most samples do not require a paid version of Visual Studio 2008, and you may use Visual Studio
Web Developer Express edition.

Some samples will need to be run under Internet Information Server (IIS), and some samples will
need SQL Server installed — they will work with SQL Server 2005 or later, and have been tested
with SQL Server Express.

The code in this book is written in C#.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’s happening, we ’ve used a number of
conventions throughout the book.

➤

➤

➤

➤

➤

➤

➤

INTRODUCTION

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

 1. These usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps to complete the exercises.

WARNING Boxes like this one hold important, not - to - be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are off set
and displayed like this.

As for styles in the text:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl +A.

 We show fi lenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

 We use boldface to emphasize code that is of particular

 importance in the present context .

 SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. Some of the source code used in
this book is available for download at http://www.wrox.com . Once at the site, simply locate the
book ’s title (either by using the Search box, or by using one of the title lists), and click the Download
Code link on the book ’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book ’ s ISBN is 978 - 0 - 470 - 74365 - 2.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

➤

➤

➤

➤

Table 3 -3 breaks down common browser support offered for HTTP -only cookies.

TABLE 3-3: Common Browser Support for HTTP-only Cookies

BROWSER VERSION READ PREVENTED WRITE PREVENTED

Internet Explorer 8 Yes Yes

Internet Explorer 7 Yes Yes

Internet Explorer 6 Yes No

Mozilla Firefox 3 Yes Yes

Mozilla Firefox 2 Yes Yes

Opera 9.5 Yes No

Opera 9.2 No No

Safari 3.0 No No

Google Chrome Initial Beta Yes No

 Validating Form Input ❘ 53

ASP.NET 2.0 (and later) always sets the HTTPOnly attribute on the session ID and forms
authentication cookies. You can confi gure all cookies created server -side to be HTTPOnly via
web.config, as shown here:

 < system.web >

 < httpCookies httpOnlyCookies="true"/ >

 < /system.web >

If this is too restrictive, the HttpOnly fl ag can be set programmatically, as shown here:

HttpCookie protectedCookie = new HttpCookie("protectedCookie");

protectedCookie.HttpOnly = true;

Response.AppendCookie(protectedCookie);

An example Web site demonstrating HTTP -only cookies is provided in the code downloads for this
book, which you can use with different browsers to check their support for HTTP -only cookies. It is
important to remember that not all browsers support this attribute, and so you should not rely on it
solely to protect sensitive cookies.

 VALIDATING FORM INPUT

Generally, you will validate user input via a form such as the one shown in Figure 3 -5.
The fi elds on the form ask for the user ’s name, a subject, the user ’s blog address, the user ’s
email address, and a comment. As you create a form, you have an idea of the input you expect
in each form fi eld. For example, a name may consist of letters, numbers, and spaces.

54 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

An email address will have an “@” symbol and at least one period. A Web site address will begin
with “http:// ” (or perhaps “https:// ”), and the comment or subject fi elds cannot be blank.

FIGURE 3-5: An example of a Web form (taken from the author’s blog)

To validate input to your requirements, you could add a validation function, as shown in the
following sample:

private bool ValidateForm()

{

 if (subject.Text.Trim().Length == 0 ||

 subject.Text.Trim().Length > 50)

 return false;

 if (comment.Text.Trim().Length == 0 ||

 comment.Text.Trim().Length > 512)

 return false;

 string nameRegex = @"^[a-zA-Z]$";

 if (!Regex.IsMatch(

 name.Text, nameRegex,

 RegexOptions.CultureInvariant) ||

 name.Text.Trim().Length < 5 ||

 name.Text.Trim().Length > 50)

 return false;

 string webRegex = @"^((ht|f)tp(s?)\:\/\/|~/|/)?([\w]+:\w+@)?([a-zA-Z]{1}

 ([\w\]+\.)+([\w]{2,5}))(:[\d]{1,5})?((/?\w+/)+|/?)(\w+\.[\w]{3,4})

 ?((\?\w+=\w+)?(& \w+=\w+)*)?";

 if (!Regex.IsMatch(

 website.Text, webRegex,

 RegexOptions.CultureInvariant))

 return false;

 string emailRegex = @"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*";

 if (!Regex.IsMatch(

 email.Text, emailRegex,

 RegexOptions.CultureInvariant))

 return false;

 return true;

}

The validation code shown uses the correct approach, checking for whitelisted values through the
Length property on fi eld values and regular expressions. (Regular expressions are a formal language
for identifying strings of text, parsing, and matching them.) The validation procedure checks every
fi eld, and rejects data that does not match the requirements set.

However, in the real world, things become more complicated. According to the Guinness
World Records, the longest name on a birth certifi cate is Rhoshandiatellyneshiaunneveshenk
Koyaanisquatsiuth Williams, which far exceeds the arbitrary upper limit of 50 characters. The
regular expression for name checking also excludes characters such as an apostrophe ('), so anyone
with a surname of O’Dell, for example, would not be accepted. The email regular expression
simply checks the format of the email, looking for text made up of characters or numbers, then an
@ sign and then more text to the right of the @ sign, a period, and then a minimum of three more
characters. This excludes many valid email addresses and, of course, there is no way to tell if an
email address is valid without sending a message to it and requiring a response.

Furthermore, the validation function does not indicate where it failed or if there was more than a
single failure. This makes it diffi cult for the user to fi gure out why input has been rejected. Finally, the
code runs on the server, so a user must submit the form before being told that the validation failed.

 Adding validation functions to every form like this is a laborious process, and one that is prone to
error. ASP.NET includes common validation controls that allow you to minimize the validation
coding you must perform, and, if the validation controls provided as standard are not suitable, then
you can write your own.

 Validation Controls

All ASP.NET validation controls are normal ASP.NET controls that also implement the IValidator
interface, as shown here:

public interface IValidator

{

 void Validate();

 string ErrorMessage { get; set; }

 bool IsValid { get; set; }

}

Validating Form Input ❘ 55

56 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 As you can see, the IValidator interface defi nes two properties (ErrorMessage and IsValid)
and a single method (Validate). When a validation control is placed on a page, it adds itself to the
page ’s Validators collection. The Page class provides a Validate method that iterates through
the Validators collection, calling each registered control. The Validate method in each control
performs whatever validation logic has been written, and then sets the IsValid and ErrorMessage
properties appropriately. Each standard validation control also has a ControlToValidate property
that attaches the validation to the input control you wish to validate.

ASP.NET controls that trigger a postback have a CausesValidation property. When set to true ,
a postback will cause the page ’s Validate method to be called before any of the control ’s event
handlers run. Some controls (such as Button) will have a default CausesValidation value of true ;
others (generally those that do not automatically trigger a postback) do not.

Page processing does not stop when validation fails. Instead, the page property IsValid is set
to false. It is up to you (as the developer) to check this property and decide if execution should
continue. If validation has not occurred at all, and you attempt to check Page.IsValid , an
exception will occur.

In addition to the ErrorMessage property (which can be shown in the ValidationSummary control),
the standard ASP.NET validation controls also provide a Text property. This property can be used
to provide a visual indicator beside a form fi eld that has failed validation, as shown in Figure 3 -6.

A single validation control, with

the Text property set to “*”

A Validation Summary

control containing all the

current validation messages

FIGURE 3-6: An example validation screen showing a validation summary and
validation controls

The screen displayed in Figure 3 -6 shows the basic validation controls in action. The form that
produced this screen is as follows:

 < form id="form1" runat="server" >

 < asp:ValidationSummary ID="validationSummary" runat="server" / >

 Name: < asp:TextBox runat="server" ID="name" > < /asp:TextBox >

 < asp:RequiredFieldValidator ID="nameRequired" runat="server"

 ErrorMessage="You must enter your name" ControlToValidate="name"

 Display="Dynamic" Text=" * " / >

 < br / > Email: < asp:TextBox runat="server" ID="email" / >

 < asp:RequiredFieldValidator ID="emailRequired" runat="server"

 ErrorMessage="You must enter your email"

 ControlToValidate="email" Display="Dynamic" Text=" * " / >

 < asp:RegularExpressionValidator ID="emailValidator" runat="server"

 ErrorMessage="Your email address does not appear to be valid" Text=" * "

 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+) * "

 ControlToValidate="email" > < /asp:RegularExpressionValidator >

 < br / > Web Site: < asp:TextBox runat="server" ID="website" / >

 < asp:RegularExpressionValidator ID="websiteValidator" runat="server"

 ErrorMessage="Your web site address does not appear to be valid." Text=" * "

 ControlToValidate="website" Display="Dynamic"

 ValidationExpression="http(s)?://([\w-]+\.)+[\w-]+(/[\w- ./?% & =] *)?" /

 < br / > < br / > Comment:

 < asp:RequiredFieldValidator ID="commentRequired" runat="server"

 ErrorMessage="You must enter a comment" ControlToValidate="comment"

 Display="Dynamic" Text=" * " / >

 < br / >

 < asp:TextBox runat="server" ID="comment" Columns="50" Rows="5"

 TextMode="MultiLine" / > < br / > < br / >

 < asp:Button runat="server" ID="submit" Text="Submit"

 OnClick = "submit_OnClick"/ >

 < /form >

NOTE If you have a single button on your ASP.NET page, you may not have a
click handler for the button. It ’ s not strictly necessary. However, if you don ’ t have
a click handler, ASP.NET validation does not happen automatically, and when
you check the validation status using Page.IsValid() , then an exception will be
thrown in some versions of ASP.NET. If you don ’ t want to add an event handler,
then you can manually perform validation by calling Page.Validate() before
you check Page.IsValid() .

 Standard ASP.NET Validation Controls

ASP.NET provides six validation controls:

 RequiredFieldValidator

 RangeValidator

 RegularExpressionValidator

 CompareValidator

 CustomValidator

Each control has some additional common properties

 ControlToValidate — The name of the control the validation rule applies to.

 EnableClientScript — When set to false, no client -side validation will occur, and checks
will only happen once the page is submitted to the server.

➤

➤

➤

➤

➤

➤

➤

Validating Form Input ❘ 57

58 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 SetFocusOnError — When set to true, this will place the cursor inside the fi rst fi eld that
fails validation.

 Display — This controls how the error message is shown. The Display property can have
one of the following three values:

 None — The validation message is never displayed.

 Static — Space for the validation message is always reserved in the page layout.

 Dynamic — Space for the validation message is only reserved if the validation fails.

 ValidationGroup — A validation group allows you to place controls on a page into
logical groups, each with separate buttons for form submission. When a button with
a ValidationGroup property is clicked, any validation controls with a matching
ValidationGroup property will be fi red.

 Using the RequiredFieldValidator

 The RequiredFieldValidator checks if the value of a control is different from its initial value.
At its simplest, when applied to a text box, the control ensures the text box is not empty, as
shown here:

Name: < asp:TextBox runat="server" ID="name" > < /asp:TextBox >

 < asp:RequiredFieldValidator ID="nameRequired" runat="server"

 ErrorMessage="You must enter your name" ControlToValidate="name"

 Display="Dynamic" Text=" * " / >

The control may also be applied to list boxes or drop -down menus. In this case, set the
InitialValue property on the validation control, as shown here:

 < asp:DropDownList runat="server" ID="county" >

 < asp:ListItem Selected="True" > Select a county < /asp:ListItem >

 < asp:ListItem >Antrim < /asp:ListItem >

 < asp:ListItem > Armagh < /asp:ListItem >

 < asp:ListItem > Down < /asp:ListItem >

 < asp:ListItem > Fermanagh < /asp:ListItem >

 < asp:ListItem > Londonderry < /asp:ListItem >

 < asp:ListItem > Tyrone < /asp:ListItem >

< /asp:DropDownList >

< asp:RequiredFieldValidator runat="server" ID="requiredCounty"

 InitialValue="Select a county" ControlToValidate="county"

 ErrorMessage="You must select a county" Text=" * " / >

All other validators will only run when the control they are validating is not empty (although the
CustomValidator may be confi gured to run on empty controls if necessary). If a form fi eld is
mandatory, you must use a RequiredFieldValidator .

 Using the RangeValidator

 The RangeValidator checks if the value of a control falls within a desired range for a desired type
(Currency , Date , Double , Integer, or String). The default type is String. The following example
will validate if a text box has a value between 18 and 30:

➤

➤

➤

➤

➤

➤

 < asp:TextBox runat="server" ID="age" / >

 < asp:RangeValidator runat="server" ID="ageRange"

 ControlToValidate="age"

 MinimumValue="18" MaximumValue="30"

 Type="Integer"

 ErrorMessage="You must be between 18 and 30." Text=" * " / >

 Using the RegularExpressionValidator

The RegularExpressionValidator validates the value of a control value with a regular expression
set in the ValidationExpression property. In design mode, Visual Studio provides a list of common
regular expressions, including email address, Web site address, and various postal codes for selected
countries. You should remember that a regular expression is simply a pattern match. So, for example,
if you are accepting a ZIP code, you should perform further checks on its validity, as shown here:

 < asp:TextBox runat="server" ID="zipcode" / >

 < asp:RegularExpressionValidator runat="server" ID="validateZipcode"

 ControlToValidate="zipcode"

 ValidationExpression="\d{5}(-\d{4})?"

 ErrorMessage="Please enter a valid zipcode"

 Text=" * " / >

 Using the CompareValidator

 The CompareValidator compares the value of a control against a static value, against the value
of another control, or against a data type. In addition to the data type check, the control provides
comparison types Equal, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and NotEqual .

The following example compares the contents of a textbox against a value of “ yes ” :

 < asp:TextBox runat="server" ID="confirm" / >

 < asp:CompareValidator runat="server" ID="confirmValidator"

 ControlToValidate="confirm"

 ValueToCompare="yes"

 Type="String"

 Operator="Equal"

 ErrorMessage="Enter yes to continue"

 Text=" * " / >

If you want to compare the value of two controls (for example, a password change dialog), you set
the ControlToCompare property and the operator to Equal, as shown here:

 < asp:TextBox runat="server" ID="password" TextMode="Password" / >

 < asp:TextBox runat="server" ID="passwordConfirmation" TextMode="Password" / >

 < asp:CompareValidator runat="server" ID="passwordValidator"

 ControlToValidate="password"

 ControlToCompare="passwordConfirmation"

 Operator="Equal"

 ErrorMessage="Passwords do not match"

 Text=" * " / >

Validating Form Input ❘ 59

60 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 If you want to check that the input entered matches a particular data type, then you set the
Operator property to DataTypeCheck , and the Type property on the control to Currency , Date ,
Double , Integer, or String. Following is an example:

 < asp:TextBox runat="server" ID="anInteger" / >

 < asp:CompareValidator runat="server" ID="integerValidator"

 ControlToValidate="anInteger"

 Operator="DataTypeCheck"

 Type="Integer"

 ErrorMessage="You must enter an integer"

 Text=" * " / >

 Using the CustomValidator

 The CustomValidator allows you to create your own customized validators that implement your
business logic. To add server -side validation, you implement a handler for the ServerValidate
event. If you want to add client -side validation via JavaScript, you can specify a function name in
the ClientValidationFunction property. Finally, you can specify if the validator triggers even
if the bound control ’s value is empty by setting the ValidateEmptyText to true . However, if you
want to match the behavior of the standard controls, then use a RequiredFieldValidator instead.

 The server -side event handler gets everything it needs in the SenderValidateEventArgs parameter.
This parameter has a Value property, which contains the value from the control that triggered
validation. It also contains an IsValid property, which you set to true or false , depending on the
results of your validation. It is best practice to set IsValid to false at the start of your code, and
only set it to true after successful validation. This ensures that if something goes wrong in your
logic, the safer option (marking a fi eld as invalid) happens.

For example, the following code would declare a fi eld and its custom validator:

 < asp:TextBox runat="server" ID="quantity" / >

 < asp:CustomValidator runat="server" ID="validateQuanity"

 ValidateEmptyText="false"

 ControlToValidate= "quantity"

 OnServerValidate="OnValidateQuantity"

 ErrorMessage="Quantities must be divisable by 10"

 Text=" * " / >

 The server -side code for the custom control would look something like the following:

protected void OnValidateQuantity(object source,

 ServerValidateEventArgs args)

{

 args.IsValid = false;

 int value;

 if (int.TryParse(args.Value, out value))

 {

 if (value % 10 == 0)

 {

 args.IsValid = true;

 }

 }

}

Client -side validation functions have the same arguments:

 < script language="javascript" >

 function validateQuantity(source, args) {

 args.IsValid = false;

 if (args.Value % 10 == 0) {

 args.IsValid = true;

 }

 }

 < /script >

To enable client -side validation, you must set the ClientValidationFunction property on the
custom validator control, as shown here:

 < asp:TextBox runat="server" ID="quantity" / >

 < asp:CustomValidator runat="server" ID="validateQuanity"

 ValidateEmptyText="false"

 OnServerValidate="OnValidateQuantity"

ClientValidationFunction="validateQuantity"

 ControlToValidate= "quantity"

 ErrorMessage="Quantities must be divisable by 10"

 Text=" * " / >

 Validation Groups

In some cases, you may want to include more than one form via multiple buttons and event handlers
on a single page. With ASP.NET 1.0, this was problematic as soon as validation controls were used.
When the user clicked one button, all the
validation controls would fi re. ASP.NET 2.0
introduced the ValidationGroup property,
which allows you to place controls in a group
and limit the validation process. For example,
a login page may also contain a registration
page, as shown in Figure 3 -7.

 The following code for the page in Figure 3 -7
shows an example of grouping the validation
controls into different validation groups.
(The ValidationGroup properties are shown
in bold.)

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Validation Groups Example < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div id="loginForm" >

 < h1 > Login < /h1 >

FIGURE 3-7: An example page with two forms

Validating Form Input ❘ 61

62 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 Username:

 < asp:TextBox runat="server" id="loginUsername" / >

 < asp:RequiredFieldValidator runat="server" id="loginUsernameRequired"

ValidationGroup="loginForm"

 ControlToValidate="loginUsername"

 ErrorMessage="You must supply your username"

 > * < /asp:RequiredFieldValidator >

 Password:

 < asp:TextBox runat="server" id="loginPassword"

 TextMode="Password" / >

 < asp:RequiredFieldValidator runat="server" id="loginPasswordRequired"

ValidationGroup="loginForm"

 ControlToValidate="loginPassword"

 ErrorMessage="You must supply your password"

 > * < /asp:RequiredFieldValidator >

 < br / >

 < asp:Button runat="server" id="login"

 Text="login"

ValidationGroup="loginForm" / >

 < /div >

 < div id="signupForm" >

 < h1 > Sign up < /h1 >

 Username:

 < asp:TextBox runat="server" id="signupUsername" / >

 < asp:RequiredFieldValidator runat="server" id="signupUsernameRequired"

ValidationGroup="signupForm"

 ControlToValidate="signupUsername"

 ErrorMessage="You must supply a new username"

 > * < /asp:RequiredFieldValidator >

 Email:

 < asp:TextBox runat="server" id="signupEmail" / >

 < asp:RequiredFieldValidator runat="server" id="signupEmailRequired"

ValidationGroup="signupForm"

 ControlToValidate="signupEmail"

 ErrorMessage="You must supply an email address"

 > * < /asp:RequiredFieldValidator >

< br / >

< asp:Button runat="server" id="signup"

 Text="signup"

ValidationGroup="signupForm" / >

< /div >

< /form >

 < /body >

 < /html >

You can see that both the validation controls and the asp:Button controls have the property
set. When a button is clicked, the validation controls in its ValidationGroup will fi re; any other
validation control will not execute.

WARNING Remember, to use validation you must set the CausesValidation
property on any control that may cause a postback. You must check Page.
IsValid during your code execution.

TYPICAL UNTRUSTED INPUT SOURCES

The following is a list of common untrusted input sources. It is by no means
exhaustive — input varies with each application. You must decide on the
trustworthiness of your inputs.

 Form fi elds (from Web controls or directly from the request object)

 Query string variables

 Databases

 External Web services

 Cookies

 HTTP headers

 Session variables

 ViewState

➤

➤

➤

➤

➤

➤

➤

➤

 A CHECKLIST FOR HANDLING INPUT

The following is a checklist you should follow when deciding how to deal with user input and how
to output it to a Web page:

 Review all inputs to a system and decide if they are trustworthy. — Remember that all
inputs should be considered untrustworthy by default. If input must be trusted and comes
from outside your application, it must be validated and sanitized. A good practice is to
perform validation for all inputs, trusted or not.

 Review code that generates output. — Remember that XSS attacks are dependent on using
untrusted input as direct output. Examine your code. Look for Response.Write , < % = and
setting Text of Web Controls as well as other properties on ASP.NET controls.

 Examine output functions and determine if they use untrusted input parameters . — Once
all output parameters have been discovered, examine the values they are using to generate
output. If they are using untrusted input, then it will require encoding. Typical input sources
that generate output include database queries, the reading of fi les from the fi le system, and
calls to Web services.

 Determine what encoding the output expects. — Different output types require different
encoding methods. For example, HTML requires HTML encoding, URLs require
URL encoding, and so on.

 Encode output. — When assigning output, use the encoding you have determined to make
the output safe.

➤

➤

➤

➤

➤

A Checklist for Handling Input ❘ 63

64 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 Ensure cookies are marked as HttpOnly. — As part of your layered defense, ensure that
any cookies that you do not need to access on the Web client are marked with the HttpOnly
attribute.

 Do not disable request validation on a site -wide basis. — Request validation should be
disabled on a per -page basis. This ensures that any page where you forget that input is
accepted will be protected until you add encoding to the page output and turn request
validation off.

 Use Microsoft ’s Anti -XSS library and SRE . — The Microsoft Anti -XSS library provides
more robust and fl exible encoding methods than the standard .NET framework. In
addition, the SRE will automatically encode output for controls it knows about. However,
this is not an excuse to avoid explicitly encoding output yourself.

➤

➤

➤

 Using Query Strings, Form
Fields, Events, and Browser
Information

Input arrives into your Web application from various sources. Chapter 3 discussed how you
should treat input, how input should be considered untrustworthy by default, how you can
validate it, and how you can output it safely. This chapter introduces some of ways input
can arrive, the vulnerabilities each of these vectors are susceptible to, and how you can
mitigate against them.

In this chapter, you will learn about the following:

 How to pass input via query strings

 How to use hidden form fi elds

 How forms can be hijacked

 How the ASP.NET event model works

 How to avoid common mistakes with browser information

 USING THE RIGHT INPUT TYPE

HTTP allows input into your application in the following four ways:

 The query string

 Form fi elds

 HTTP headers

 Cookies

➤

➤

➤

➤

➤

➤

➤

➤

➤

4

66 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

The base class for ASP.NET pages, Page, contains a property, Request of type HttpRequest . When
your Page class is created by ASP.NET, you have access to the Request property. It is initialized and
contains the various inputs sent as part of the page request, as well as other information provided
by the ASP.NET run -time (such as the identity of the user, whether the page has been requested over
SSL, and so on). The Page class also contains a Response property that allows you to manipulate
the response being sent when your page has fi nished processing.

 QUERY STRINGS

 A query string is the part of a URL that contains data to be passed to a Web application as part of
a request. A question mark separates the query string from the address part of a URL (as defi ned in
RFC1738 and RFC3986). A typical URL containing a query string would be as follows:

http://site.example/path/page.aspx?querystring

Generally, query strings are used to pass parameters to a page consisting of name/value pairs, with
name separated from the value by an equals sign (�), and the pair separated from other pairs by an
ampersand (&), as shown here:

name1=value1 & name2=value2 & name3=value3

 The name plus equals plus value plus ampersand is a convention set out in the HTML specifi cation.
It is by no means mandatory. The obvious problem with using a query string to pass data is that
query strings are visible in the Web browser address bar. Tampering with the query string is a
simple matter of typing.

In 2007, the government of the United Kingdom (UK) introduced a new application system called
the Medical Training Application Service (MTAS) for junior doctors who were requesting training
placements. A junior doctor using the system discovered that by changing a query string parameter,
he could view messages to other doctors offering jobs. The site and information was exposed for
at least eight hours. It was further discovered that, by manipulating the query string, personal
information such as phone numbers, previous criminal convictions and even sexual orientation
of applicants were available. The formal name for this type of vulnerability is Insecure
Direct Object Reference .

The MTAS took a message identifi er as one of its parameters. This message identifi er was a direct
object reference to an internal data record and, worse, it consisted of four digits assigned in
consecutive order (for example, 0001, 0002, 0003). An attacker (or even a normal user, in the case
of MTAS) could tamper with the message identifi er to access other messages. Usually, the reference
to a unique reference within a database (or any exposed data construct) could be vulnerable to this
type of attack.

Another common error is to specify fi lenames with query strings (or, indeed, any parameter). If
an attacker passes c:\windows\system32\config\sam and your code does not check whether
fi lenames are contained within its own scope, then the possibility exists that your application
may serve up the Windows password database, the Security Accounts Manager (SAM) fi le, or a
relative path such as ..\..\windows\system32\config\sam is provided, which breaks out of your

application directory by using .. to navigate to the parent directory of the current directory. (This
is known as a Path Traversal Attack.)

 NOTE Admittedly, this is a worst - case scenario. Most Web applications run in a
security context that restricts them to a particular area on the Web server. For
more information, see Chapter 9 and Chapter 14.

The best protection against this type of attack is to avoid exposing direct references to objects such
as fi les and database records in a query string or other parameter. Instead, use another key, index,
map, or indirect method that is easy to validate. If a direct object reference must be used, then you
must ensure that the user is authorized before using it.

For example, consider a system that contains orders, and users have the capability to view their
order status. Order numbers usually must be sequential, and the temptation is to have a URL such
as the following:

http://mysystem/viewOrder.aspx?orderID=10001

Rather than use a direct object reference, you can mitigate against an insecure direct object
reference vulnerability by adding a new way to reference to the objects in the order class or order
table — in a manner that is not incremental or easy to guess. Typically, a Globally Unique Identifi er
(GUID) is used. Now your URL would look like the following:

http://mysystem/viewOrder.aspx?

 orderID=E1109F32-A533-42c7-A5FF-45F0334C909E

In addition, you must implement an access control check (if appropriate) because GUIDs are only
guaranteed to be unique, not diffi cult to guess, and, if used in a query string, could be discovered
by an attacker looking through the browser history or other logs. In the orders scenario, you
would typically not allow anonymous access to the page, and you would check that the user who is
attempting to view the order is, in fact, the person who placed the order, or a user within your own
company who is authorized to do so (such as an account manager or an employee responsible for
fulfi lling the order).

In ASP.NET, query strings are typically used with the HyperLink control, or as part of the cross -
page postback mechanism provided by the PostBackURL property on controls that can trigger
postbacks.

Query Strings ❘ 67

68 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 FORM FIELDS

Hidden form fi elds are another method of embedding input in a page. A hidden form fi eld is a
type of form input fi eld that is not displayed to the user — for example < input type= “ hidden ”
name= “ example ” value= “ hidden ” / > . A user (or an attacker) can only see these fi elds by viewing
the source of an HTML page.

 Because the fi eld is hidden from view it is tempting to assume that the values set in these fi elds do
not change. But this would be a mistake.

Shopping cart software has been a typical culprit in trusting the immutability of hidden form fi elds.
In 2000, the Common Weakness Enumeration site (http://cwe.mitre.org/) listed fi ve shopping
cart packages that allowed price modifi cations because the price for individual items was exposed
in a hidden form fi eld. In that year, the Lyris List Manager allowed list subscribers to obtain
administrator access to the Web control panel by modifying the value of the list_admin hidden
form fi eld.

The mitigation for this vulnerability (known as External Control of Assumed Immutable
Web Parameter in the Common Weakness Enumeration Database, a dictionary of common
software fl aws available at http://cwe.mitre.org/) is simple — never assume hidden form
fi eld values, or, indeed, any client -side parameter will never change. Furthermore, never store data
that you don ’t want the user to know (like system passwords or cryptographic keys) inside a hidden
form fi eld.

In ASP.NET, you can pass data between postbacks in a special hidden fi eld called ViewState .
This does not free you to put secrets into ViewState because, by default, ViewState is not
encrypted. It is, however, protected against tampering by default. ViewState is covered in detail
in Chapter 5.

WARNING The Request class allows you to access input by its name — for
example Request[“ example “] . This method of accessing your input should be
avoided at all costs because the Request indexer fi rst checks the query string,
then form variables, then cookies, and fi nally server variables to supply the
named input. If there are duplicate input names in any of these locations, only
the fi rst matching input will be returned, with no indication of where it came
from and no indication if there are more matches. It is safest to be specifi c
when looking for input, and to use the Request.QueryString , Request.Form ,
 Request.Cookies , and Request.ServerVariables collections.

 REQUEST FORGERY AND HOW TO AVOID IT

In 2008, Princeton University researchers William Zeller and Edward W. Felten discovered
vulnerabilities in four major Web sites — including one against INGDirect, which allowed them to
access a victim ’s bank account and transfer money from one account to another. The attack was
made possible by forcing a user who was already logged into INGDirect to perform the money
transfer process, a vulnerability known as Cross Site Request Forgery (CSRF). The transfer process
is driven by multiple HTML form submissions, which the researchers automated by writing an
HTML page that contained a copy of the forms, and then submitted them without user intervention
via JavaScript. You can read their fi ndings and the forms and methods they used in the paper they
published at http://citp.princeton.edu/csrf/ .

In order to understand how the attack works, you must understand how Web sites authenticate user
requests. When a user logs into a Web site, the Web site will generally create a cookie on the user ’s
machine. From that moment forward, until the cookie expires or is deleted when the browser is
closed, that browser is authenticated and authorized by the Web site. If an attacking Web site is able
to send a request to the vulnerable Web site, the site has no way of knowing that it is under attack.
Since the Web site already trusts the user (because of the presence of the authentication cookie),
the Web site executes the request and processes it as if the user had made the request deliberately. If a
Web site uses HTTP Authentication (where the user is prompted for their username and password
by a dialog box in the browser, rather than an HTML page), then it is the browser that remembers
the user has authenticated to the Web site and will send the username and password with each
subsequent request.

Consider a simple Web site that allows users to read and delete messages. The Web site has been
badly written and the send message page works using query string parameters. For example,
http://www.example.com/sendMessage.aspx?to=boss@example.com & subject=I � resign

 & message=Take � this � job � and � . . . would send an email to boss@example.com explaining the
user has resigned. All an attacker has to do to exploit this is to somehow get the user ’s browser to
send a request for sendMessage.aspx, and doing so is simple. All the attacker does is create a Web
page including the following code:

 < img src= "http://www.example.com/

 sendMessage.aspx?to=boss@example.com & subject=I+resign & message=

 Take+this+job+and+... " >

If an unfortunate user and logged into example.com and is lured to a page containing the img tag
shown previously, the browser will look at the src parameter and load it. The example.com Web
application will see the incoming request and the authentication cookie it placed when the user
logged in, recognize the user, and run the code contained in sendMessage.aspx . The attacker ’s site
has forged a request, sourced from the attacking site, but destined for the vulnerable Web site, thus
crossing sites. Figure 4 -1 shows how this type of CSRF works.

Request Forgery and How to Avoid It ❘ 69

70 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

Vulnerable Web site

Vulnerable Web site

Authentication Process

User’s Browser

User’s Browser

Browses away

from

vulnerable site

Authentication

Cookie

Login Process

Authentication Cookie

Attacking Web siteUser’s Browser

Authentication

Cookie

Browses to

Attacking

Web site

User’s Browser

Web Browser

loads page

including attack

payload

Authentication

Cookie

Delivers Payload

<img src="http://
mysite.com/

delete.aspx?id=somethi
ngImportant">

Vulnerable Web site

Processes Request

Exploit Occurs

Sees Cookie

Recognizes

User

User’s Browser

Authentication

Cookie

Loads attack URL and sends cookie

Authentication

Cookie

FIGURE 4-1: An illustration of a CSRF attack

The obvious mitigation to a URL -based attack like this would be to switch to HTML forms. Using
forms would be obeying the HTML specifi cation — a URL -driven (GET) request should never
change state. RFC2616 (the HTTP 1.1 specifi cation) states in section 9.1.2 that the GET and HEAD
HTTP methods should not have the signifi cance of taking an action other than retrieval. Each GET
request should be idempotent — that is, every request should return the same result.

 WARNING You may recall from Chapter 2 that a postback occurs when
an ASP.NET page submits the form it generates back to itself, usually via a
JavaScript - triggered form submission. You might, therefore, consider that
checking Page.IsPostback is a reasonable way to check that a request is not
driven from the query string. Unfortunately, this is not the case. If you send a
GET request to an ASP.NET page that includes the __ViewState parameter,
the __EventValidation parameter, and any other form parameters from
your page in the query string, then ASP.NET considers this to be a postback.
Depending on your page ’ s function, you may end up changing state — breaking
the HTTP specifi cation. You should always check the HttpMethod of the request
in addition to Page.IsPostback like so:

if (Page.IsPostBack & & Request.HttpMethod=="POST")

{

 // Perform my form actions

}

However, moving to forms is not enough. An attacker can easily build a form on his or her Web site
using the same fi eld names and types as those on your Web site. The attack form would then have
its action parameter set to the vulnerable Web site and JavaScript used to submit the form without
user interaction. This was how the INGDirect attack worked.

You may be aware that, during an HTTP request, a header called REFERER may contain the URL of
the previous page in the browser history. This header could be used to check if a form was submitted
from a page on the same Web site, except that some browsers and Internet privacy software strip
this header. So what can you do to ward off CSRF attacks?

 Mitigating Against CSRF

For a CSRF attack to work, the following conditions must be met

 The attacker must have knowledge of sites on which the victim is currently authenticated.
These sites may be Internet sites or intranet applications.

 The target site must use ambient authority, where the browser sends authentication credentials
with each request.

 The target site must not have secondary authentication for actions, such as a requirement to
re -enter a password.

➤

➤

➤

Request Forgery and How to Avoid It ❘ 71

72 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 The common mitigation technique against CSRF for ASP.NET sites is to use ViewState in
combination with a ViewStateUserKey. (See Chapter 5 for more details.) However, this presents
some disadvantages:

 ViewState must be enabled, which may not always be the case in optimized Web sites.

 You must have a way of uniquely identifying users, either by their login identity or by some-
thing like a session identifi er.

 The ViewStateUserKey must be manually set within your code, something that is easy
to forget.

 If the ViewStateUserKey does not meet your needs, another method of mitigation is to add a token
to every form, which is verifi ed when the form is submitted. You must generate a token for every
session, store it in session state or in a cookie on the user ’s machine, insert the token (or a value
generated from it) into each form, and check it with every form submission. However, you can
automate the entire process by implementing an HTTP Module.

An HTTP Module (as you may remember from Chapter 2) is an object that sits in the ASP.NET
pipeline, and can hook into the processing of a request or the return of a response. To add CSRF
protection to every form submission, you should implement the following actions:

 1. If a request is from a new user (no cookie is sent), generate a unique token for that user.

 2. If the request is a GET request, store that token in a session cookie on the user ’s browser.
(A session cookie is one that is deleted when the user closes the browser.)

 3. If the request is a POST request (or PostBack) and the token is not present, reject the request
as a potential CSRF attack.

 4. If the request is a POST request (or PostBack), read the token from the user ’s browser and
compare it to the token embedded in the ASP.NET Web form. If the tokens do not match,
or the token is missing, reject the request as a potential CSRF attack.

 5. If the tokens match, allow the request to continue.

 6. When the request is completed, but before the response is set, examine the response to look
for an ASP.NET Web forms. If one is present, automatically add the token (or a value gener-
ated from it) into the form as a hidden fi eld.

You should note that only form submissions are protected. Any pages driven by query strings
(GET requests) are not protected, as you should be obeying the HTML specifi cation.

 TRY IT OUT Writing an HTTP Module to Protect Against CSRF Attacks

In this example, you will write an HTTP Module that will perform the various actions necessary to
protect against a CSRF attack. In doing so, you will not only protect your Web application, but you
will learn how to hook into various stages of the ASP.NET pipeline and perform actions automatically
without having to add code into your pages ’ classes.

➤

➤

➤

The purpose of this example is not to teach you everything about HTTP Modules. Rather, it will
introduce you to how to use HTTP Modules to intercept requests, and teach you techniques to provide
a security layer. If you have no experience with writing an HTTP Module, Chris Love has published a
Wrox Blox titled “Leveraging httpModules for Better ASP.NET applications, ” which will guide you
through writing an HTTP Module. (See http://www.wrox.com/WileyCDA/WroxTitle/
Leveraging - httpModules - for - Better - ASP - NET - applications.productCd - 0470379391.html
for more information.)

1. In Visual Studio, create a new Class Library solution called AntiCSRF. Delete the default fi le
Class1.cs, because you will be creating a source fi le from scratch.

2. Right -click on the References folder in Solution Explorer and choose Add Reference. Add a
reference to System.Web .

3. Right -click on the project in Solution Explorer and choose “Add a new class ”. Name the class
 fi lename AntiCSRF.cs. A new fi le will be created with the following code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AntiCSRF

{

 class AntiCSRF

 {

 }

}

 Creating an HttpModule

1. Add a using statement for System.Web. Change the class to be public and derive from
IHttpModule. Your class fi le should now look like the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

 using System.Web ;

namespace AntiCSRF

{

 public class AntiCSRF : IHttpModule

 {

 }

}

2. Place the cursor in IHttpModule and a small rectangle
will appear underneath the I of IHttpModule. Clicking
the rectangle will produce the menu shown in Figure 4 -2. FIGURE 4-2: The implementation menu

Request Forgery and How to Avoid It ❘ 73

74 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

3. Choose the option to “Implement interface ‘IHttpModule ’”. Code will be created in your source
fi le that implements the IHttpModule interface. Remove the contents of the default implementa-
tions that throw NotImplementedExceptions. Your class fi le will now look like the following

namespace AntiCSRF

{

 public class AntiCSRF : IHttpModule

 {

 #region IHttpModule Members

 public void Dispose()

 {

 }

 public void Init(HttpApplication context)

 {

 }

 #endregion

 }

}

 Hooking Your HttpModule Into the ASP.NET Pipeline

1. To hook into the ASP.NET pipeline, you must register for the events your module will respond to.
For AntiCSRF, you must respond to two events:

 PreSendRequestHeaders will allow you to drop the CSRF token as a cookie.

 PreRequestHandlerExecute will allow you to check the cookie before a page is executed,
and add page level handlers to add the hidden form fi le that you will check against.

2. You register events in the Init function by using the Context parameter. Each event takes two
parameters: an object source and an EventArgs args. Change the Init method to add han-
dlers for these events, and add empty functions to put the AntiCSRF code into. Your class should
look something like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Web;

namespace AntiCSRF

{

 public class AntiCSRF : IHttpModule

 {

 #region IHttpModule Members

 public void Dispose()

 {

 }

 public void Init(HttpApplication context)

 {

 context.PreSendRequestHeaders +=

 new EventHandler(PreSendRequestHeaders) ;

➤

➤

 context.PreRequestHandlerExecute +=

 new EventHandler(PreRequestHandlerExecute) ;

 }

 #endregion

 private static void PreSendRequestHeaders(

 object source, EventArgs args)

 {

 }

 private static void PreRequestHandlerExecute(

 object source, EventArgs args)

 {

 }

 }

}

The source parameter is an instance of the current HttpApplication that, when cast to the cor-
rect class, allows access to the Request , Response , and Context properties you would see if you
were inside a Web form.

 The fi rst event you will implement is PreRequestHandlerExecute .

 Adding Hooks into Page Events

1. Add a using statement for System.Web.UI at the top of the class, and then change the
PreRequestHandlerExecute method to be as follows:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source;

 HttpContext context = application.Context;

 if (context.Handler != null)

 {

 Page page = context.Handler as Page;

 if (page != null)

 {

 }

 }

}

This code checks that the request is one that ASP.NET handles, and that it is handled by a class that
derives from System.Web.Page. Once you have a Page object, you can add event handlers to the
Page lifecycle. The Page PreRender event allows you to change the contents of a page before they
are output. So you can use this to append a hidden form fi eld to the page to carry the CSRF token.

2. Add a using statement for System.Globalization at the top of your class, and then add the fol-
lowing method to your module class:

private static void PagePreRender(object source, EventArgs eventArgs)

{

 Page page = source as Page;

 if (page != null & & page.Form != null)

Request Forgery and How to Avoid It ❘ 75

76 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 {

 string csrfToken;

 HttpContext context = HttpContext.Current;

 if (context.Request == null ||

 context.Request.Cookies == null ||

 context.Request.Cookies["__CSRFCOOKIE"] == null ||

 string.IsNullOrEmpty(context.Request.Cookies["__CSRFCOOKIE"].Value))

 {

 csrfToken = Guid.NewGuid().ToString("D",

 CultureInfo.InvariantCulture);

 context.Items["Wrox.CSRFContext"] = csrfToken;

 }

 else

 csrfToken = page.Request.Cookies["__CSRFCOOKIE"].Value;

 ObjectStateFormatter stateFormatter = new ObjectStateFormatter();

 page.ClientScript.RegisterHiddenField("__CSRFTOKEN",

 stateFormatter.Serialize(csrfToken));

 }

}

This method fi rst checks whether the page exists and contains a form. It then checks whether
a CSRF cookie is present. If a cookie is not present, it generates a new token and stores the value
in the HttpContext for the current request so that it can be retrieved later to create the cookie.
Otherwise, it reads the cookie value for the token. Finally, the token is serialized using the same
method as ViewState , and a hidden fi eld is added to the form using RegisterHiddenField .

3. Of course, this method will never get called without adding it to the event handlers for the page.
So add the following highlighted line to the PreRequestHandlerExecute method:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source;

 HttpContext context = application.Context;

 if (context.Handler != null)

 {

 Page page = context.Handler as Page;

 if (page != null)

 {

 page.PreRender += PagePreRender ;

 }

 }

}

 Registering Your HttpModule

At this point, you now have a CSRF token added to every form, and you may well want to see the
module in action. Before an HttpModule can be used, however, it must be registered in a site ’s web
.config fi le. If you look at the default web.config fi le for a Web site, you will see module registrations
in system.web, as shown here:

 < system.web >

....

 < httpModules >

 < add name="ScriptModule"

 type="System.Web.Handlers.ScriptModule, System.Web.Extensions,

 Version=3.5.0.0, Culture=neutral,

 PublicKeyToken=31BF3856AD364E35"/ >

.. < /httpModules >

....

 < /system.web >

If you are running IIS7 in integrated pipeline mode, then module registrations go into the system
.webServer element, as shown here:

 < system.webServer >

 < modules >

 < remove name="ScriptModule"/ >

 < add name="ScriptModule" preCondition="managedHandler"

 type="System.Web.Handlers.ScriptModule,

 System.Web.Extensions, Version=3.5.0.0,

 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/ >

 < /modules >

 < /system.webServer >

In the example web.config snippets shown above, you can see that the Ajax Web extensions module is
added to the ASP.NET pipeline. The httpModules element (or the modules element for IIS7) can have
one of the following three child elements:

 Add — This element registers a module within an application. The Add element takes two
attributes: name (which is a friendly name for a module) and type (which specifi es the class and
assembly combination containing the module with optional version, culture, and public key
information). For the IIS7 integrated pipeline module registration, Add takes an additional optional
parameter, precondition (which confi gures the conditions under which a module will run). As
ASP.NET loads a module, it fi rst searches in the \bin directory of the application, and then the
system assembly cache. Modules are loaded in the order they appear within the web.config fi le.

 Remove — This element removes a module from an application. The Remove element takes a single
element, name (which is the friendly name you used when adding a module).

 Clear — This element clears all modules form an application. The Clear element takes no
parameters at all, and removes every registered handler (including the default handlers that
provide authorization and authentication, as well as other useful functionality). So be very careful
that removing everything is what you want to do.

1. To check that everything is working so far, create a new ASP.NET Web application in your
solution, and add a reference to your module project. Set the new Web application to be the
default project in Visual Studio, and add the HTTP Module to the httpModules section of web
.config, as shown here:

<system.web >

....

 < httpModules >

 < add name="ScriptModule"

 type="System.Web.Handlers.ScriptModule,

➤

➤

➤

Request Forgery and How to Avoid It ❘ 77

78 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 System.Web.Extensions, Version=3.5.0.0,

 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/ >

 < add name="AntiCSRF" type="AntiCSRF.AntiCSRF, AntiCSRF"/ >

 < /httpModules >

....

 < /system.web >

2. If you now run the default page in your test Web site and view the HTML code, the hidden form
fi eld holding the CSRF token is now inserted into the HTML without any code in the page itself,
as shown here:

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head > < title >

 < /title > < /head >

 < body >

 < form name="form1" method="post" action="Default.aspx" id="form1" >

 < div >

 < input type="hidden" name="__CSRFTOKEN" id="__CSRFTOKEN"

 value="/wEFJDlhNzNhYjI1LWZjNTYtNGI1Ni05MzY0LTZkYzhhMmM2NTg2Mw==" / >

 < input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

 value="/wEPDwULLTE2MTY2ODcyMjlkZHC01nphXvgGDcIfOJNvq3cjQtcr" / >

 < /div >

 < /form >

 < /body >

 < /html >

Now, the token will be placed into every form. All that remains is to drop the matching cookie, to
check the values of the cookie, and to ensure the form fi elds match.

 Dropping the CSRF Cookie

1. To drop a cookie during the response, you must create and add it after the response has been cre-
ated, but before it has been written. HTTP cookies are set as part of the response headers, so you
must drop the cookie before the headers are sent; otherwise, it will be too late. So you must add
an event handler to the PreSendRequestHeaders event.

2. To pass the value of the cookie from the code you created in the PreRender event, you must
use the HttpContext object, which is available to all events within the page lifecycle. If you
examine the code you wrote, you will see the following:

 HttpContext context = HttpContext.Current;

 context.Items["Wrox.CSRFContext"] = csrfToken;

3. The HttpContext class provides an Items property, a key/value collection that is used to share
data between stages in an HttpModule and an HttpHandler during the lifetime of a request. Fill
in the empty PreSendRequestHeaders method as follows:

private static void PreSendRequestHeaders(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source ;

 HttpContext context = application.Context ;

 if (context.Items["Wrox.CSRFContext"] != null)

 {

 HttpCookie csrfCookie = new HttpCookie("__CSRFCOOKIE")

 {

 Value = context.Items["Wrox.CSRFContext"].ToString(),

 HttpOnly = true

 } ;

 context.Response.Cookies.Add(csrfCookie) ;

 }

}

4. In the PreRender event for the Page, you added the CSRF token to Context.Items if it was
not already present as a cookie. In the method directly above, you can check for the value in the
Context.Items property and drop the appropriate cookie. The cookie is marked as HttpOnly to
reduce the attack surface for the Cross -Site Scripting (XSS) attacks detailed in Chapter 3.

5. Finally, you must add the check that the token value and token cookie match. These types of
checks are placed inside the PreRequestHandlerExecute event handler because you will need
to stop the processing of the request before the page handler takes over. Add the following high-
lighted checking:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source;

 HttpContext context = application.Context;

 if (context.Handler != null)

 {

 Page page = context.Handler as Page;

 if (page != null)

 {

 page.PreRender += PagePreRender;

 if (context.Request.HttpMethod.Equals("POST",

 StringComparison.Ordinal))

 {

 if (context.Request != null)

 {

 HttpCookie csrfCookie =

 context.Request.Cookies ["__CSRFCOOKIE"] ;

 string csrfFormField = context.Request.Form["__CSRFTOKEN"] ;

 if (string.IsNullOrEmpty(csrfFormField) & &

 (csrfCookie == null ||

 string.IsNullOrEmpty(csrfCookie.Value)))

 throw new Exception("Cookie and form field missing") ;

 if (csrfCookie == null ||

 string.IsNullOrEmpty (csrfCookie.Value))

Request Forgery and How to Avoid It ❘ 79

80 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 throw new Exception("Cookie missing") ;

 if (string.IsNullOrEmpty(csrfFormField))

 throw new Exception("Form field missing") ;

 string tokenField = string.Empty ;

 ObjectStateFormatter stateFormatter =

 new ObjectStateFormatter() ;

 try

 {

 tokenField =

 stateFormatter.Deserialize(

 context.Request.Form["__CSRFTOKEN"]) as string ;

 }

 catch

 {

 throw new Exception("Form field format error") ;

 }

 if (csrfCookie.Value.Equals(tokenField))

 throw new Exception("Mismatched CSRF tokens") ;

 }

 }

 }

 }

}

The previous verifi cation code will only execute after a form submission, because it checks that the
HTTP verb for the request is POST, as described in Chapter 2 when you examined the differences
between request verbs.

One slightly unusual feature of the checking code is that during deserialization of the token, any
exception is caught in contradiction to the general .NET framework guidelines. This is done for safety
reasons. Any error indicates a problem, where it is acceptable to move outside the guidelines.

 Summary

You now have an HttpModule that protects against CSRF. To test it, you can create a form with a
Submit button, load the form, delete the cookies for the site, and then submit the form. This should
throw an exception. Unfortunately, Internet Explorer caches cookies while it is running. So, to
perform this test, you should use Firefox, which will delete cookies from memory when you clear them
from disk.

If you want to download a more complete CSRF protection module (one from which this sample is
based), one is available at http://www.codeplex.com/AntiCSRF. The complete module throws custom
exceptions. This allows you to log and fi lter the exceptions more explicitly. It also adds the capability
to redirect to an error page, exclude pages from the checks, and customize the cookie and form fi eld
names used.

 PROTECTING ASP.NET EVENTS

When you were testing the CSRF protection module you wrote, you may have tested it on a page
that raises postbacks. You may have noticed another hidden form fi eld, __EVENTVALIDATION . A
common interface design for Web applications is to show or hide various parts of a Web page based
on who a user is, and what that user can do. For example, users in an administrative role may see
extra buttons and text on a page (such as “Delete comment ” or “Modify price ”).

 This is generally implemented by including every possible control on a page, and hiding or disabling
them at run -time as the page loads using the role membership provider that ASP.NET provides, as
shown here:

if (!User.IsInRole("siteAdmin"))

 adminPanel.Visible = false;

When a control is hidden, the HTML it would generate is no longer included in the HTML output
for a page. When a control is disabled, then, typically, the HTML -enabled attribute is set to false
when the control ’s HTML is rendered.

 TRY IT OUT Examining Event Validation

As you learned in Chapter 2, postbacks work by setting two JavaScript fi elds before the form is sent to
the server. But what happens if you hide or disable a control and inject the hidden control ’s name
into the hidden form fi eld before a form is submitted?

1. Create a new Web application and replace the contents of default.aspx with the following:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default"

 EnableEventValidation="false"% >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < p > User : Trevor Dwyer

 < asp:LinkButton ID="view" runat="server" Text="View"

 onclick="view_OnClick" / > & nbsp;

 < asp:LinkButton ID="delete" runat="server" Text="Delete"

 onclick="delete_OnClick ” / >< /p >

 < p > < asp:Literal ID="action" runat="server" / > < /p >

 < /div >

 < /form >

 < /body >

 < /html >

Protecting ASP.NET Events ❘ 81

82 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

2. Change the code behind fi le to the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void view_OnClick(object sender, EventArgs e)

 {

 action.Text = "View Clicked";

 }

 protected void delete_OnClick(object sender, EventArgs e)

 {

 action.Text = "Delete Clicked";

 }

}

When either link button is clicked, the page will change to contain a message highlighting which button
was clicked. If you view the source for the page, you will see that link buttons work via JavaScript. For
example, the HTML rendered for the View button is javascript:__doPostBack('view',''). You
can paste this JavaScript into the address bar in IE to trigger the postback.

3. Change the Page_Load method to add the following code, which will hide the Delete button when
the current user is not in the siteAdmins role:

protected void Page_Load(object sender, EventArgs e)

{

 if (!User.IsInRole("siteAdmins"))

 delete.Visible = false ;

}

 When you run the adjusted page, you will see the Delete button is no longer present (as we haven ’t
enabled roles, so any role membership check will always return false).

4. Now, enter javascript:__doPostBack('delete','') into the address bar and click Enter. You
will see that the delete OnClick event was fi red, but why is this? If you examine the page declara-
tion you will see that event validation was disabled, as shown here:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default"

 EnableEventValidation="false" % >

If you re -enable event validation by removing EnableEventValidation= “ false “ from the page
declaration (it is enabled by default), and then attempt to trigger the delete event again, you will see
that an exception, “Invalid postback or callback argument ”, is thrown.

Event validation was introduced in ASP.NET 2.0 to prevent the falsifi cation of events. Event
validation is the default behavior for ASP.NET. When validation is enabled, controls that render
(which excludes those controls that are not visible) will register themselves with event validation.
When a postback occurs, ASP.NET looks through the registered events to discover if the control
that would receive the event has been registered.

Event validation also covers postback data from list controls. For example, if you have a drop -down list
of status codes (some of which are only available to administrators), and an attacker sends a falsifi ed
request containing one of the status codes that was not in the list, then an exception will occur.

Event validation should be part of your defense in depth strategy. However, it should not be your
sole defense. Because it is up to controls to register for event validation, it is possible that a third -
party control (or, indeed, one of your own custom controls) may not register for event validation.
(A control registers by calling RegisterForEventValidation during rendering.) If you have
controls or values within controls that change based on any condition (for example, a user ’s group
membership), then always perform checks within the event handler to validate that the event should
have occurred, or the values that are sent are valid for the conditions you set.

 AVOIDING MISTAKES WITH BROWSER INFORMATION

Request headers are the fi nal type of input that is transmitted with every request. You can access
the request headers via the Headers property on the Request class. In a normal (valid) request,
these headers are set by the browser. For example, the headers shown in Table 4 -1 were sent to a test
page by IE7.

TABLE 4-1: Example Request Headers

HEADER NAME VALUE

Connection Keep-Alive

Accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-ms-application, application/vnd.ms-xpsdocument,

application/xaml+xml, application/x-ms-xbap, application/

x-silverlight, application/x-shockwave-flash, */*

Accept-Encoding gzip, deflate

Accept-Language en-gb

Host localhost:49258

Referer http://localhost:49258/Request%20Headers/Default.aspx

User-Agent Mozilla/4.0 (compatible with MSIE 7.0; Windows NT 6.0; SLCC1;

.NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506;

.NET CLR 3.0.30618; .NET CLR 3.5.21022; .NET CLR 3.5.30729)

UA-CPU x86

Avoiding Mistakes with Browser Information ❘ 83

84 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

A common mistake made when dealing with browser information is to trust it implicitly. Like
everything else from the client, browser information can be faked or removed. For example, the
Referer header (the spelling mistake of “Referrer ” is now enshrined in the HTTP standards) is
commonly stripped by some browser privacy software. This header is supposed to contain the URL
for the page that referred the current request, either via a link or a form submission. For example,
if http://www.wrox.com/example.html contained a link to http://www.example.com/ then,
when the link is clicked, the browser populates the Referer header with http://www.wrox.com/
example.html .

However, as you discovered in Chapter 2, you can fake requests with any value you want. A
common spammer tactic is to send fake requests to blogs, which blindly display referrer information
for their pages. These fake requests contain a Referer header that points to the Web site they are
promoting. The blog software will then blithely trust the information and display it.

Matt ’s Mail Script is a popular Perl email script developed by Matt Wright and used on many
Common Gateway Interface (CGI) driven Web sites. Initially, when the Internet was generally free
of mischief, the script was simple and took its input from form fi elds. As you have discovered, this is
not wise any more. Spammers realized how Matt ’s script worked (the source is freely available). The
spammers wrote software that looked for the script, and then created requests that sent out spam
emails through it. When this abuse started, one of the lines of defense was checking the Referer
header, on the assumption that a real Web request would contain a Referer Header. This worked
for a short while, until spammers changed their spam software to fake the Referer header to be
the Web site hosting the script, which then passed the checks, at which point the spam fl owed
through the script again.

ASP.NET also includes defenses against a header -splitting attack. This attack happens when an
attacker includes extra carriage return or line feed characters in a request, which can cause
an application to return two responses, the second being under the control of the attacker. This
protection is enabled by default, but can be disabled by setting the enableHeaderChecking
attribute on the httpRuntime element in your application ’s web.config fi le. This setting is there for
the rare occasions when your application may need to use header continuation and performs its own
checks — a very unlikely scenario. So leave header checking turned on!

 NOTES You can read more about the details of this attack in Amit Klein ’ s
whitepaper “ Divide and Conquer: HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics, ” available from http://www
.packetstormsecurity.org/papers/general/whitepaper_httpresponse

.pdf .

 This should demonstrate to you that every input should be validated.

 A CHECKLIST FOR QUERY STRINGS, FORMS, EVENTS,

AND BROWSER INFORMATION

The following is a checklist you should follow when deciding how to deal with query strings, forms,
events, and browser information:

 Never change state via a GET request. — The HTTP specifi cations state that GET requests
must not change state.

 Do not use direct, sequential object references. — Always use indirect object references
(such as a GUID) to refer to resources on a Web server. Direct object references can be
changed easily to allow attackers to access objects they should not be able to see. Check that
the current user is authorized to see the object requested.

 Do not use hidden form fi elds to hold sensitive information, unless they are properly pro-
tected. — Remember that form fi elds (and query strings) can be manipulated by attackers.

 Add a CSRF token to your forms. — This will allow you to check that the request came
from your own Web site.

 Check the Request type when checking if a request is a postback. — This will protect you
from ASP.NET considering query string -driven requests as potential postbacks.

 Do not disable event validation, but do not rely on it. — Registering for event validation is
optional for controls. Always check conditions within postback events.

 Do not rely on Request headers. — Combine the steps outlined in this chapter with the
validation checklist provided in Chapter 3.

➤

➤

➤

➤

➤

➤

➤

A Checklist for Query Strings, Forms, Events, and Browser Information ❘ 85

5
 Controlling Information

Once your application has accepted data from the user (even if it is only a request to display
a page), your application must generate output. You have already seen how to validate
input, and how to sanitize it for output. However, there are unexpected ways that sensitive
information about your application can be leaked.

In this chapter, you will learn about the following:

 How information can be leaked with ViewState

 How to secure and encrypt ViewState

 Strategies and approaches for error logging

 Strategies and approaches for securing sessions

 Other ways information can become exposed

 CONTROLLING VIEWSTATE

 One of the defi ning features of ASP.NET Web forms is the event model, which turns actions
(such as clicking a button, or changing the selected item in a list) into server -side events, an
approach that matches Windows Forms programming. To support this model, Microsoft
introduced ViewState , a mechanism whereby pages maintain their state over multiple client
requests and responses. When a property is set on a control, the control can save the property
value into its control ’s state. Each control ’s state is added into the ViewState for a page,
which is sent by the server and returned by the client as a hidden form fi eld such as the
following:

 < input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwUKMTcwMzQ5NDcyMGQYAQUeX19Db250cm9sc1JlcXVpcmVQb3N0QmFja0tleV9f

FggFL2N0bDAwJE1haW5QbGFjZUhvbGRlciRFZGl0b3IkQ29tbWVudFJhZGlvQnV0dG9uBS9jdGww

➤

➤

➤

➤

➤

88 ❘ CHAPTER 5 CONTROLLING INFORMATION

MCRNYWluUGxhY2VIb2xkZXIkRWRpdG9yJENvbW1lbnRSYWRpb0J1dHRvbgUuY3RsMDAkTWFpblBs

YWNlSG9sZGVyJEVkaXRvciRUaHJlYWRSYWRpb0J1dHRvbgUuY3RsMDAkTWFpblBsYWNlSG9sZGVy

JEVkaXRvciRUaHJlYWRSYWRpb0J1dHRvbgUuY3RsMDAkTWFpblBsYWNlSG9sZGVyJEVkaXRvci

ROZXdUaHJlYWRDaGVja0JveAUoY3RsMDAkTWFpblBsYWNlSG9sZGVyJEVkaXRvciRCb2R5VGV4d

EJveAVRY3RsMDAkTWFpblBsYWNlSG9sZGVyJEVkaXRvciRjdGwwMF9NYWluUGxhY2VIb2xkZXJf

RWRpdG9yX0JvZHlUZXh0Qm94ZGlhbG9nT3BlbmVyBVhjdGwwMCRNYWluUGxhY2VIb2xkZXIk

RWRpdG9yJGN0bDAwX01haW5QbGFjZUhvbGRlcl9FZGl0b3JfQm9keVRleHRCb3hkaWFsb2dPc

GVuZXJfV2luZG93" / >

 ViewState has advantages and disadvantages. As controls are added to a page, ViewState grows
and can add kilobytes to a page size, affecting the speed at which a page is loaded and rendered by
a client. However, without it, the ASP.NET cannot support its event -driven programming model,
and controls would lose their properties when a page is reloaded. ViewState is a property bag. You
can utilize it yourself to store values you want passed around with every request by accessing the
ViewState property in the Page class, as shown in the following example

 ViewState["MyExample"] = "wrox";

 Looking at this ViewState example, you may think that the data is encrypted because you cannot
read it, and it does not appear to contain any property names or values. But it is not. It ’s obviously
not clear text. Instead, in the previous example, the ViewState value is Base64 -encoded. Base64
encoding takes binary data and translates it into a text -based representation in base 64 (the
numerical system with 64 as its base). This is a system chosen for historical reasons — 64 characters
was the maximum subset that most character sets shared and that were printable. This combination
leaves a Base64 encoding data stream unlikely to be modifi ed accidentally in transit through legacy
systems such as email.

You can perceive encoding like translating from one representation to another, or like taking a
word in English and translating it into French. If someone who does not know any French sees my
translated (or encoded) text, he or she may assume that it is meaningless, or gibberish. However,
someone who knows both English and French will be able to undo the translation and decode the
French version into English.

Encryption works differently. It takes values and locks them using a key that only key holders can
open. While it may be possible for observers to know what type of lock is used, they cannot view
the encrypted data without having the key in their possession.

 Because ViewState is only encoded by default, it can be decoded by any other application that
understands how to decode Base64 data. Fritz Onion (one of the founders of Pluralsight, an
organization delivering technical content and training, and a frequent contributor to ASP.NET
conferences and MSDN magazine) has written such a utility, called ViewState Decoder (Figure 5 -1).
It is available from http://www.pluralsight.com/community/media/p/51688.aspx .

As you can see from Figure 5 -1, ViewState Decoder makes it simple to take a ViewState fi eld from
a Web page and determine the values that are stored inside. If you are using ViewState to store
sensitive information in your application, an attacker could use this tool to fi nd that sensitive data
inside.

NOTE The Open Web Security Application Project (OWSAP) refers to the
vulnerabilities in this chapter as information leakage . Applications can uninten-
tionally expose information that an attacker can use to learn about the internals
of an application.

 Validating ViewState

If you know how ViewState is encoded, you may assume that you can create a completely fake
ViewState value and submit it to an ASP.NET page. This would enable you to add, change, or
delete values stored within the page. This kind of modifi cation could potentially allow an attacker
to take over the behavior of controls in the server -side code.

FIGURE 5-1: ViewState Decoder

Controlling ViewState ❘ 89

90 ❘ CHAPTER 5 CONTROLLING INFORMATION

However, by default ASP.NET signs ViewState after it is created, so it cannot be changed. It
does this by hashing the ViewState values, and creating a unique value from the contents of the
ViewState. This hash value is then encrypted with a key that is stored on the server, and then the
encrypted hash is placed into the ViewState. (Hashing and encryption are explained in more detail
in Chapter 6.) During postback processing, ASP.NET validates the ViewState by decrypting the
embedded hash and recomputes the hash value based on the ViewState contents. If the hashes
do not match, then the ViewState must have been tampered with, and a ViewStateException is
thrown. Although an attacker could send a fake ViewState with his or her own hash value, the
attacker cannot know the encryption key the server uses. And, so, when ASP.NET attempts to
decrypt the attacker ’s ViewState, it will fail and throw an exception.

This validation mechanism can cause two common problems. The fi rst problem arises when you
must host your application on multiple machines. By default, the encryption key (or machine key)
used to encrypt the validation hash is randomly generated on machine If a request containing
ViewState is sent by machine A to the browser, but is received by machine B, then the decryption
will fail because machine A and machine B have different machine keys. Secondly, if your
application restarts, the machine key value is regenerated; which means that if a page is sent
to a client browser, then the application restarts before the page is submitted and the sent back
ViewState will fail.

While it is possible to disable ViewState validation by setting the EnableViewStateMac attribute
to false on a page or for the entire application, this is obviously a bad idea, because it allows
attackers to tamper with data in the ViewState. Instead, you should ensure that each machine has
an identical machine key. The machine key is confi gured via the < machineKey > element in your
web.config fi le. By default, this element is set in the global web.config fi le stored in the .NET
framework installation directory and contains the following settings:

 < machineKey

 validationKey="AutoGenerate, IsolateApps"

 decryptionKey="AutoGenerate, IsolateApps"

 validation="SHA1"

 decryption="AUTO" / >

 To set the keys manually, you must create new random numbers and encode them in hexadecimal
format. Listing 5 -1 shows a program that generates a suitable machineKey element that you can
then paste into your web.config fi le.

 LISTING 5 - 1: Generating a Machine Key

 using System;

using System.Security.Cryptography;

using System.Text;

namespace Wrox.BeginningSecureASPNET.MachineKeyGenerator

{

 class Program

 {

 static readonly RNGCryptoServiceProvider rngProvider =

 new RNGCryptoServiceProvider();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 static void Main(string[] args)

 {

 StringBuilder machineKeyElement = new StringBuilder();

 machineKeyElement.Append(" < machineKey\n");

 machineKeyElement.Append(" validationKey=\"");

 machineKeyElement.Append(CreateRandomKey(64));

 machineKeyElement.Append("\"\n");

 machineKeyElement.Append(" decryptionKey=\"");

 machineKeyElement.Append(CreateRandomKey(32));

 machineKeyElement.Append("\"\n");

 machineKeyElement.Append(" validation=\"SHA1\"\n");

 machineKeyElement.Append(" decryption=\"AES\"\n");

 machineKeyElement.Append("/ > ");

 Console.WriteLine(machineKeyElement.ToString());

 }

 static string CreateRandomKey(int length)

 {

 byte[] randomKey = new byte[length];

 rngProvider.GetBytes(randomKey);

 string hex = BitConverter.ToString(randomKey);

 return hex.Replace("-", "");

 }

 }

}

OrcsWeb, a well -known ASP.NET hosting provider, has a Web page that also generates machineKey
elements. However, given that the machine key is used for encryption and validation, getting a
cryptographic key from a third party presents a risk. You don ’t know if the third party will save it.
However, since the OrcsWeb system does not know what Web site you will use, the key on the risk
is minimal. You can use it at http://www.orcsweb.com/articles/aspnetmachinekey.aspx .

If you are using IIS7 you can generate a machine key from the IIS Manager by clicking the
Machine Key icon in the ASP.NET features list. To generate a fi xed key, click the “Generate Keys”
link in the action panel. Using the IIS Manager you can set a machine key for all sites on a machine,
or for individual sites you select in the Sites folder in the Connections panel. The machineKey
element is not just used for validation of ViewState. The validationKey is also used for signing
authentication tickets in forms -based authentication, as well as role manager and anonymous
identifi cation. The decryptionKey is used to encrypt and decrypt the authentication ticket, and
optionally encrypt and decrypt ViewState .

 Because of the importance of the machineKey element, it should be kept secret. If you use a machine
key in development, you should use a new machine key on your production systems, available
only to the server administrators. It should also be protected by encrypting it within web.config .
Chapter 6 provides instructions on how to do this.

 Encrypting ViewState

As you ’ve learned, ViewState is not encrypted by default. ViewState encryption can be requested
by a control, by an entire page, or on an application -wide basis. You can also disable ViewState

Controlling ViewState ❘ 91

92 ❘ CHAPTER 5 CONTROLLING INFORMATION

encryption even if a control requests it, but obviously this is not recommended. Once ViewState is
encrypted, programs such as ViewStateDecoder will not be able to look at its contents.

To enforce ViewState encryption for an entire application, you should set the
viewStateEncryptionMode attribute on the pages element in web.config, as shown here:

 < pages ... viewStateEncryptionMode="Always" ... / >

You can programmatically request encryption on a per -page basis by calling
Page.RegisterRequiresViewStateEncryption(); within your code, or by setting the
ViewStateEncryptionMode attribute in the page directive, as shown here:

 < %@ Page Language="C#" ... ViewStateEncryptionMode="Always" % >

Encrypting ViewState will increase the time it takes for a page to render and respond, as well as
affect the size of the hidden form fi eld. Be sure to run tests to see if any increases are acceptable in
terms of load time and bandwidth.

 Protecting Against ViewState One - Click Attacks

 ViewState validation ensures that no one can tamper with the contents, while optional ViewState
encryption ensures that no one can view the data. However, one vulnerability still remains — replay
attacks. A replay attack occurs when an attacker takes a valid ViewState from a previous request
and sends it at a later point, or under the context of another user.

 Often, a ViewState replay attack can be used in the fl avor of Cross Site Request Forgery (CSRF)
called a one -click attack , where a form is submitted via JavaScript to a vulnerable page. To do
this, the attacker needs a valid ViewState that can be acquired by simply browsing to a page.
Unfortunately, because ViewState does not expire, the attack form will work forever.

In light of this attack method, ASP.NET provides the ViewStateUserKey property as a way to lock
ViewState to a specifi c user or session. If this property is set, ASP.NET uses this value as part of
the key for integrity checking and validation. Generally, this value is set to either the username of a
currently authenticated user, or, if this is not available, the session identifi er for the current session.
This effectively locks down the ViewState so that it cannot be in another session or by another
user. Using the session identifi er also adds an implicit expiration time to the ViewState when
the session expires. You should be aware of this if your forms take a long time to complete. If the
session expires as a user is submitting the form then an exception will occur, because the ViewState
will no longer be valid.

 Because the ViewStateUserKey must be set before the ViewState is created (or loaded) and parsed,
it must be set early in the page lifecycle, within the Init event. Generally, you will want to apply
a ViewStateUserKey across every single page. There are several possible approaches, including
responding to the PreRequestHandlerExecute event in global.asax, or by using a custom base
class for all your pages. The author ’s personal preference is to respond to the event in global.asax ,
as shown in Listing 5 -2.

 LISTING 5 - 2: Setting a ViewState User Key in global.asax

 < %@ Application Language="C#" % >

 < script runat="server" >

 void Application_PreRequestHandlerExecute

 (object sender, EventArgs e)

 {

 HttpContext context = HttpContext.Current;

 // Check we are actually in a webforms page.

 Page page = context.Handler as Page;

 if (page != null)

 {

 // Use the authenticated user if one is available,

 // so as the user key does not expire over

 // application recycles.

 if (context.Request.IsAuthenticated)

 {

 page.ViewStateUserKey = context.User.Identity.Name;

 }

 else

 {

 page.ViewStateUserKey = context.Session.SessionID;

 }

 }

 }

 < /script >

This approach has the advantage of not needing to remember the base class for every page, and not
having to remember to never change it. If you prefer to use a custom pass class, you can use the
OnInit event of the page lifecycle, as shown in Listing 5 -3.

 LISTING 5 - 3: Setting a ViewState User Key in a Base Class

 using System;

using System.Web.UI;

public class ProtectedViewStatePage : Page

{

 protected override void OnInit(EventArgs e)

 {

 if (Request.IsAuthenticated)

 {

 ViewStateUserKey = User.Identity.Name;

 }

 else

 {

 ViewStateUserKey = Session.SessionID;

 }

Controlling ViewState ❘ 93

continues

94 ❘ CHAPTER 5 CONTROLLING INFORMATION

LISTING 5-3 (continued)

 base.OnInit(e);

 }

}

You should then change the class your pages inherit from to the new base class you created. If you
do not use code behind, then you can set the base class application -wide by using the < pages >
element in web.config, as shown here:

 < system.web >

 < pages pageBaseType="ProtectedViewStatePage" >

 < /pages >

< /system.web >

 Removing ViewState from the Client Page

Another mechanism to protect ViewState is to remove it altogether from the client page.
ASP.NET 2.0 introduced the PageStatePersister class to accomplish this. By default, pages
use HiddenFieldPageStatePersister, which stores ViewState in a hidden fi eld in the HTML
page. However, ASP.NET also provides SessionPageStatePersister, which places ViewState
within session state. To switch the persistence mechanism that a page uses, you override the
PageStatePersister property on a page, as shown here:

 protected override PageStatePersister PageStatePersister

{

 get

 {

 return new SessionPageStatePersister(this);

 }

}

If you add this property declaration to your page, you may wonder why the ViewState hidden fi eld
still appears in the HTML your page produces. If you use the ViewStateDecoder utility, you will
see that the ViewState in your page no longer holds keys and values, but rather a reference that the
SessionPageStatePersister uses to retrieve the values from its memory.

 You can confi gure SessionPageStatePersister on a per -page basis, or within a common base
class for all pages. By default, SessionPageStatePersister keeps nine saved ViewStates for a
session. If the maximum number is reached, the oldest ViewState is discarded. This limits the
maximum number of windows that users can open in your application. You can increase the
number of ViewState s saved within the < sessionPageState > confi guration element. However, this
obviously will affect the available memory on your Web server.

 Disabling Browser Caching

You should be aware of browser caching — which means that a browser may cache a page on
the local hard drive. This cached copy of a page is vulnerable to inspection by spyware or other

software running on a user ’s machine. If this risk is a concern you can mitigate against this by
turning caching off for a page, using the OutputCache directive on a page, as shown here:

 < %@ OutputCache Location="None" VaryByParam="None" % >

Alternatively, you can accomplish this by adding the following code to your Page_Load event:

 Response.Cache.SetCacheability(HttpCacheability.NoCache);

Always disable caching for pages that contain sensitive data.

 ERROR HANDLING AND LOGGING

Error messages are probably one of the most useful places to fi nd information when attacking a Web
application. Sending unexpected data to an application can cause internal errors which gives away
clues about how an application works, and provides information about further routes of attack —
all leading to the discovery of vulnerabilities. Errors in .NET are represented as exceptions. When
an exception occurs, ASP.NET can expose the internal workings of your application through an
error page, such the one shown in Figure 5 -2.

Error Handling and Logging ❘ 95

FIGURE 5-2: The default ASP.NET application error page

96 ❘ CHAPTER 5 CONTROLLING INFORMATION

This error page is full of useful information for developers and, unfortunately, for attackers. You
can see the exception thrown, the source around the line that caused the error, a stack trace of your
application, the version of ASP.NET running on the Web server, and the location of the fi les on the
disk drive hosting the Web application. This is obviously a problem. Luckily, ASP.NET, by default,
only serves this error to requests originating from local connections. Remote users will see an error
page like the one shown in Figure 5 -3.

The default error page indicates to an attacker that an exception occurred (by telling the attacker
that there was an Application Error) and also indicates that the application is an ASP.NET
application. You should avoid using the default error pages because of this.

Error pages are controlled by the customErrors confi guration element in web.config :

 < system.web >

 < customErrors mode="On"

 defaultRedirect="~/error.aspx" >

 < /customErrors >

 < /system.web >

 In the previous confi guration sample, the defaultRedirectAttribute has been set to error.aspx .
This confi guration means all errors get sent to error.aspx in the root of your Web application,

FIGURE 5-3: The default remote ASP.NET application error page

allowing you to present a custom error page to your users. Often, you want to present different error
pages, depending on the errors shown. For example, the following confi guration would redirect
Page Not Found errors to notfound.aspx :

 < system.web >

 < customErrors mode="On"

 defaultRedirect="~/error.aspx" >

 < error statusCode="404"

 redirect="~/notfound.aspx" / >

 < /customErrors >

 < /system.web >

This is a simple approach to error messages, but it does have the following two downsides:

 The client Web browser is forwarded to the error page via a 302 Object Moved HTTP
response code. This is easily detected by scanning tools that will often fl ag this as a
potential error condition.

 The conditions that lead to the error cannot be easily accessed, so you have no record of
what caused the application error, which possibly leaves errors undiscovered.

Often, developers are tempted to debug errors on a live Web server by turning on full error messages
so that they can view them from their remote workstations. However, there is no way to limit the
full error page to particular machines, and switching on the full error page means anyone who
causes an error to occur will see a page like that shown in Figure 5 -2.

NOTE OWASP refers to the vulnerabilities such as these as improper error

handling , which is a type of information leakage.

 Improving Your Error Handling

ASP.NET provides error events you can respond to at both a page level (Page_Error) and
application level (Application_Error). By intercepting errors via the error events, you can discover
information about the error itself by accessing Server.GetLastError (which returns the last
exception thrown) and via HttpContext (extra state information contained within the page class).

Following is an example of handling errors within a page class, using an Error class defi ned
elsewhere in the project to provide logging functions:

 public partial class MyPage : System.Web.UI.Page

{

....

 protected void Page_Error(object sender, EventArgs e)

 {

 // Log Errors.

 Exception ex = Server.GetLastError();

➤

➤

Error Handling and Logging ❘ 97

98 ❘ CHAPTER 5 CONTROLLING INFORMATION

 Error.Log(ex);

 }

}

Following is an example of handling errors within global.asax :

 < %@ Application Language="C#" % >

 < script runat="server" >

 void Application_Error(object sender, EventArgs e)

 {

 // Log Errors.

 Exception ex = Server.GetLastError();

 Error.Log(ex);

 }

 < /script >

Of course, these error handlers are a last resort. You should still be wrapping your code in try /
catch blocks and reacting accordingly.

If you implemented the error logging as shown in the example code snippets, your errors would be
logged twice because of error bubbling. ASP.NET will fi rst look for a page -level error handler, then
an application -wide error handler, and, fi nally, if neither of these error handlers is found, the default
error handling will kick into play. However, it is up to an error handler to either cancel the error by
calling Server.ClearError, or indicate to ASP.NET that it has handled it by redirecting to another
page via Server.Transfer. The latter is preferable to Response.Redirect because no redirection
response will be sent to the client, thwarting software that watches for these messages to detect errors.

 Watching for Special Exceptions

ASP.NET throws specifi c exceptions that may indicate a security problem, such as request validation
failures. It ’s a good idea to log these differently from “normal ” exceptions (for example, sending
a text message to a mobile phone, or logging to the event log with specifi c error -code monitoring
software that can detect and respond to the threat). Table 5 -1 provides some examples of exceptions
that indicate a potential threat.

EXCEPTION WHEN OCCURS

HttpRequestValidationException Occurs when request validation (see Chapter 3) is on,

and potentially threatening characters are sent with a

request.

ArgumentException Occurs when event validation fails (see Chapter 4),

indicating an attempt to fi re an event that is not valid for

a page.

ViewStateException Occurs when an invalid ViewState has been sent (as

previously described in this chapter)

TABLE 5-1: Exceptions That Indicate a Potential Threat

Each of the exceptions shown in Table 5 -1 should be specifi cally handled within your application -
wide error handler in global.asax . Any third -party software you install may provide specialized
exceptions for potential security problems. Obviously, these should be handled in the same way as
the exceptions shown in Table 5 -1.

 It is possible for unhandled exceptions to cause your entire application to crash if they occur outside
of a page request. An example might be found in a background worker thread, or within the
garbage collector. Microsoft recommends that an HttpModule be used to catch these types of errors.
You can fi nd an example at http://support.microsoft.com/?id = 911816 .

 Logging Errors and Monitoring Your Application

Now that you know how to catch errors, you must implement the other half of an error -handling
strategy: logging. Logging is not just a security strategy — it will enable you to discover where
potential problems in your application occur. Logging should also be used positively, to log events
like successful authentication, access to protected resources and so on. Positive logging will provide
easy auditing of your application. There are several ways to log errors, with the right one depending
on your environment. For example, if you run a large data center and monitor your applications via
Microsoft Operations Manager, you would log errors via Windows Management Instrumentation
(WMI). For a single server, you may have software that monitors the Windows Event Log. If you are
in a hosted environment, your options may be limited to logging to a database or sending an email
to an account you monitor.

Whatever option you choose, it must be monitored, and the messages you send to it must clearly
indicate the problem. An email message sent to a monitored email account may not require complete
details of an error message, but could point to a locked administrator -only URL that displays a
captured stack dump and other information you could use to replicate the error.

WARNING It is very important that under no circumstances should you log
sensitive information such as a user ’ s password or a credit card verifi cation
(CCV) code. Always assume that your log itself may be compromised.

 Using the Windows Event Log

The Windows Event Log is probably the most common logging framework available to a Windows
application, and the .NET framework provides specifi c classes for manipulating the Windows
Event Log within the EventLog namespace. To write an event to the Windows Event Log, you use
EventLog.WriteEntry. An entry requires an event source (usually the name of your application
or layer), the event message, an application -specifi c number for the event, and an event type
(for example, warning, error, or critical). The following code will write an error event to the
Windows Event Log:

Error Handling and Logging ❘ 99

 < body >

 < p > User Name < % = User.Identity.Name % > < /p >

 < p > Is Authenticated < % = User.Identity.IsAuthenticated % > < /p >

 < p > Authentication Type < % = User.Identity.AuthenticationType % > < /p >

 < /body >

 < /html >

 If you create a brand new ASP.NET Web application project and replace the contents
of default.aspx with Listing 7.1, you will see something similar to Figure 7 -1.

 FIGURE 7 - 1: Typical results of running the User Property Code

 You can see from Figure 7.1, or the results of running Listing 7.1, that you are an authenticated user.
Your username will be your computer name, followed by a \ and then your Windows login name.
So why were you authenticated in this way? The reason why it did this lies in the web.config fi le,
which contains < authentication mode= “ Windows “ / > . This line tells ASP.NET to use let Windows
provide authentication, which, depending on your browser settings and the URL the application is
running on, will automatically negotiate with the browser and log in silently. The Windows login
method uses an authentication protocol called NT LAN Manager, or NTLM, which you can see is
the authentication type in the sample application.

 Discovering Your Own Identity ❘ 153

154 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

ASP.NET comes with four authentication modes, as shown in Table 7 -1.

 TABLE 7 - 1: The ASP.NET Authentication Modes

 MODE DESCRIPTION

 None Uses no authentication. Your application expects only anonymous users, or, if you
wish, your application can provide its own authentication process.

 Forms Uses ASP.NET forms - based authentication as the default authentication mode.

 Windows Uses Windows authentication. This setting passes o� responsibility for
authentication to the underlying Web server (IIS or the test Web server for Visual
Studio). The Web server can then use any of its authentication methods (Basic
authentication, NTLM, Kerberos, and so on) to authenticate and pass the results
through to ASP.NET.

 Passport Uses Microsoft Passport for the authentication process. This setting is deprecated.
Replacement third - party authentication options such as OpenID, Information Cards,
and LiveID are discussed in Chapter 15.

So what happens if you change the authentication type in your web.config fi le? Obviously, the
contents of the Request.User property change. Go ahead and try it. If you set the authentication
type to None or Forms in the previous example, you will see you have no username or authentication
type, and IsAuthenticated will be false .

The next section explores the various authentication stores available to you in ASP.NET, and
how you can use them.

 ADDING AUTHENTICATION IN ASP . NET

This section examines two types of authentication:

 Forms authentication

 Windows authentication

 Using Forms Authentication

Forms authentication is a set of .NET libraries and ASP.NET controls that allows you to
authenticate users, and then maintains authentication via a token contained in a cookie, or in
the page URL.

 Confi guring Forms Authentication

To use forms authentication, you can create a login page that collects the user ’s credentials, and
then write code to authenticate them. If a user attempts to access a resource that is protected,
typically he or she will be redirected to the login page. In its simplest form, forms authentication is
confi gured in the web.config fi le by specifying the authentication mode and a login page.

➤

➤

Using the Web site you created for Listing 7 -1, enable forms authentication by modifying
your web.config as shown in Listing 7 -2.

 LISTING 7 - 2: Modifying web.confi g to enable forms authentication

 < system.web >

 < authentication mode="Forms" >

 < forms loginUrl="login.aspx" >

 < credentials passwordFormat="Clear" >

 < user name="peter" password="curd"/ >

 < user name="alex" password="mackey"/ >

 < /credentials >

 < /forms >

 < /authentication >

 < authorization >

 < deny users="?"/ >

 < /authorization >

 < /system.web >

The modifi cations shown turn on forms authentication, specify the login page URL and some users,
and then tell ASP.NET to deny access to any user who is not authenticated (authorization is covered
in more detail later in this chapter).

Table 7 -2 describes all the possible attributes for the < forms > element.

 TABLE 7 - 2: The < forms > Element Attributes

 ATTRIBUTE DESCRIPTION

 name This is the name of the cookie used to store the authentication
token. By default, this is .ASPXAUTH .

 loginUrl Speci“ es the URL to which the application will redirect to if a user
is not authenticated and tries to access a protected resource. The
default value is Login.aspx .

 protection This controls the amount of protection applied to the
authentication cookie. The four settings are:

 All „ ASP.NET uses both validation and encryption to protect the
cookie. This is the default setting.

 None „ Applies no protection to the cookie (which is obviously not
advisable and should be avoided).

continues

 Adding Authentication in ASP . NET ❘ 155

156 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

N OTE The web.config example in Listing 7.2 shows usernames and
passwords stored without any encryption or hashing. This obviously is strongly
discouraged, but is suitable for demonstrating the login process.

Of course, without a login page, users cannot authenticate. ASP.NET provides the
FormsAuthentication class to enable you to programmatically validate users against your
data store. Listing 7 -3 shows how to do this.

 ATTRIBUTE DESCRIPTION

 Encryption „ ASP.NET encrypts the cookie, but does not
validate it. This may leave your application open to attack.

 Validation „ ASP.NET validates the cookie, but does not encrypt
it. This may expose information to an attacker.

 path Speci“ es the path for the authentication cookies issued by the
application. The default value is / , and it is unlikely you will want
to change this if you have a single Web application on your site.
If you have multiple Web applications running on a single site (for
example http://example.com/app1/ and http://example
.com/app2/) and want to have a user log in separately for each
application, then you can set the path to match the directory
containing your application.

 timeout Speci“ es the amount of time (in minutes) an authentication cookie
lasts for. The default value is 30 minutes.

 cookieless If true , ASP.NET will use the URL to convey authentication
information in the URL and not in a cookie.

 defaultUrl Speci“ es the default URL a user will be redirected to if no redirect
URL is speci“ ed. This defaults to default.aspx .

 domain Speci“ es the domain name for the authentication cookie.

 slidingExpiration If set to true , the authentication cookie expiry will be reset with
every request.

 enableCrossAppsRedirect Speci“ es if cross - application redirection of authenticated users is
allowed. The default is false .

 requireSSL Speci“ es if the authentication cookie can only be transmitted over
SSL connections.

TABLE 7-2 (continued)

 LISTING 7 - 3: The login.aspx page

 < %@ Page Language="C#"% >

 < script runat="server" >

 protected void submit_OnClick(

 object sender,

 EventArgs e)

 {

 if (FormsAuthentication.Authenticate(

 username.Text, password.Text))

 FormsAuthentication.RedirectFromLoginPage(

 username.Text, true);

 else

 loginInvalid.Visible = true;

 }

 < /script >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Login < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Literal runat="server" id="loginInvalid"

 visible="false" >

 Login invalid. Try again.

 < /asp:Literal >

 < /div >

 < div >

 Username:

 < asp:TextBox runat="server" id="username" / >

 < br / >

 Password:

 < asp:TextBox runat="server" id="password"

 textmode="Password" / >

 < br / >

 < asp:Button runat="server" id="submit"

 Text="Login"

 OnClick="submit_OnClick" / >

 < /div >

 < /form >

 < /body >

 < /html >

Create this page in your Web application and log in using either of the test accounts you specifi ed
in the web.config fi le. You should see the username, that IsAuthenticated is true , and an
authentication type of Forms .

 Adding Authentication in ASP . NET ❘ 157

158 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

The login functionality is provided by two methods:

 Authenticate, which authenticates the user against the user store.

 RedirectFromLoginPage, which redirects the user back to the page originally requested.
This method takes two parameters: the name of the user, and a Boolean value indicating
if a persistent authentication cookie should be used.

 When you fi rst attempted to load the protected page, you may have noticed the URL, which will be
something like this:

http://localhost:49231/login.aspx?ReturnUrl=%2fDefault.aspx

You can see that when ASP.NET redirects users to the login page, the page they are trying to access
is specifi ed in the query string. This is used to redirect users back to their original resource once a
login has been successful.

 Of course, using web.config as a store for your usernames and passwords is not very
scalable, which is why ASP.NET provides a framework for writing membership stores — the
MembershipProvider. Out of the box ASP.NET comes with membership system that uses
SQL Server. Because Microsoft designed the membership system by using a provider model, other
database suppliers (such as MySQL, Oracle, and VistaDB) also have providers made for their
databases. But the underlying code you use will be exactly the same.

 Using SQL as a Membership Store

 The fi rst question you may be asking is how to create a database suitable for storing authentication
details. By default, ASP.NET is confi gured to use a SQL Express database placed in your App_Data
directory. The fi rst time you use one of the built -in ASP.NET controls, a suitable database will be
created for you. Alternatively, you can use the aspnet_regsql.exe utility found in the framework
directory itself (for example, C:\Windows\Microsoft.NET\Framework\v2.0.50727). This will ask
you to connect to an existing server, and will then create the membership tables, views, and stored
procedures for you.

Let ’s start off by abandoning the previous custom login page and use the built -in ASP.NET login
control. Remember, this will create a suitable database for you. Listing 7 -4 illustrates a simple use
of the login control.

 LISTING 7 - 4: Using the ASP.NET login control

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Login < /title >

 < /head >

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Login ID="Login1" runat="server" >

 < /asp:Login >

 < /div >

 < /form >

 < /body >

 < /html >

Now try to browse to your protected default.aspx and attempt to log in with any details you like.
There will be a pause, and then your login will be rejected.

NOTE You may see a timeout error as ASP.NET attempts to start up SQL
Express, create and then confi gure the database. If this happens, simply press
F5. By that point, SQL Express will have started and the database creation will
happen.

 If you look in your App_Data directory, you will see that a new database has been created,
aspnetdb.mdf . This database isn ’t added to your project by default, so right -click on the App_Data
folder and choose “Add Existing Item ” to place it in your project.

If you have an existing SQL database that you have prepared using the aspnet_regsql utility, you
must tell ASP.NET that you want to use this database. You will need to add a connection string
for your database, and then change the provider confi guration to use it. Listing 7 -5 shows a typical
web.config confi gured in this way.

 LISTING 7 - 5: Confi guring ASP.NET to use an existing, prepared membership database

 < ?xml version="1.0"? >

 < configuration >

...

 < connectionStrings >

 < add name="MyDB"

 connectionString="server=(local);database=mydb;

 integrated security=true"/ >

 < /connectionStrings >

...

 < system.web >

...

continues

 Adding Authentication in ASP . NET ❘ 159

160 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

LISTING 7-5 (continued)

 < membership >

 < providers >

 < clear/ >

 < add name="AspNetSqlMembershipProvider"

 connectionStringName="MyDB"

 enablePasswordRetrieval="false"

 enablePasswordReset="true"

 requiresQuestionAndAnswer="true"

 applicationName="/"

 requiresUniqueEmail="true"

 passwordFormat="Hashed"

 maxInvalidPasswordAttempts="5"

 minRequiredPasswordLength="7"

 minRequiredNonalphanumericCharacters="1"

 passwordAttemptWindow="10"

 passwordStrengthRegularExpression=""

 type="System.Web.Security.SqlMembershipProvider,

 System.Web, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a" / >

 < /providers >

 < /membership >

...

 < authentication mode="Forms" / >

...

 < /system.web >

 < /configuration >

 Creating Users

If you open the database, you will see 11 tables, all prefi xed with aspnet_. Obviously, it ’s a little
diffi cult to know where to create users. But ASP.NET provides two ways to do this:

 The CreateUserWizard, which is a Web forms control that will take care of the process
for you

 The Membership.CreateUser method, which allows you to do it programmatically.

Additionally, Visual Studio ’s Web server has a confi guration tool that will also allow you to create
users.

Using the Visual Studio administration tool (Figure 7 -2) is probably the easiest way to create users
during development. It is available from Project ➪ ASP.NET Confi guration. This will open the

➤

➤

Because this tool is part of Visual Studio, it ’s only suitable for development and is not available on
a “live ” server. The IIS7 administration tool (Figure 7 -3) also provides you with the capability to
manage users. Start the Internet Information Services (IIS) Manager application. Then expand the
sites tree and select your site. Double -click the .NET Users icon in the ASP.NET section to add and
manage users.

FIGURE 7-2: Adding a user with the Visual Studio ASP.NET con“ guration Web site

administration site in your Web browser. Click on the Security Tab, and then click the Create User
button. Then fi ll in all the details, close the administration site, and try logging in with your newly
created user.

 Adding Authentication in ASP . NET ❘ 161

162 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

However, using either of the administration tools limits you to creating users manually, which
is not a scalable solution. To allow your visitors to create their own accounts, you can use the
CreateUserWizard control. Open your login page again and add the control, as shown in
Listing 7 -6.

 LISTING 7 - 6: Adding the CreateUserWizard control

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Login < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Login ID="Login1" runat="server" >

 < /asp:Login >

 < /div >

 <div>

 <p>Not registered?</p>

FIGURE 7-3: Adding a user with the IIS Administration tool

 <asp:CreateUserWizard ID="CreateUserWizard1" runat="server">

 <WizardSteps>

 <asp:CreateUserWizardStep

 ID="CreateUserWizardStep1" runat="server">

 </asp:CreateUserWizardStep>

 <asp:CompleteWizardStep

 ID="CompleteWizardStep1" runat="server">

 </asp:CompleteWizardStep>

 </WizardSteps>

 </asp:CreateUserWizard>

 </div>

 </form>

</body>

</html>

If you now attempt to view the default page, you will see a dialog to create registration, much
like the one you used in the administration controls. Here, you can register another user and
try it out.

 NOTE If you are not prompted to log in, this indicates that you still have an
authentication cookie from a previous login that has not expired. Clear your
cookies and close your browser. This will remove the cookie and allow you to
log in again.

 The wizard control allows a lot of customization, far more than can be detailed here. These include
the sending of emails, extra wizard steps, and the auto -generation of passwords (which can then
be sent in emails to confi rm an email address). See the book, Professional ASP.NET 3.5 Security,
Membership and Role Management with C# and VB, by Bilal Haidar (Indianapolis: Wiley
Publishing, 2008) for more detail.

One thing to note is the email functionality. ASP.NET will generate a default email for you, but it is
likely you will want to change it. The email property is the name of a text or HTML fi le containing
the message you wish to send. The control automatically replaces < %UserName% > and < %Password% >
with appropriate values before sending the email.

 Examining How Users Are Stored

If you open up the database you confi gured for membership, you will see a large number of tables.
The main membership information is contained in the aspnet_Membership table.

If you have allowed ASP.NET to create the database, you can double -click the ASPNETDB.MDF fi le
in your App_Data folder to open it, as shown n Figure 7 -4. Then right -click on the table and choose
Show Table Data. The actual username of an account is kept in the aspnet_Users table. You can
see that, in line with best practice, the password is not stored as plain text, but as a salted hash.
(Plain text passwords are just too big of a security risk.)

 Adding Authentication in ASP . NET ❘ 163

164 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Confi guring the Membership Settings

 When you created an account, you may have tried to use a simple password, only to have it
rejected. By default, ASP.NET membership requires strong passwords — a minimum of eight
characters, containing at least one number and one non -alphanumeric character, as well as a
mixture of letter casings. This may be overkill for your sites, or diffi cult for users to remember,
so they end up writing it down. It ’s diffi cult to advise what password policies you should use. It
depends on your application. A banking Web site should use strong passwords, such as the ASP.
NET default. A blog that requires user registration to comment probably doesn ’t need that level
of strength.

 You can use the < forms > provider entry in the < membership > confi guration element to confi gure the
password policy, as well as the need for a secret question and answer, and other settings. Table 7 -3
lists the confi guration settings for the membership provider.

FIGURE 7-4: Viewing the aspnet_Membership table in Visual Studio

 TABLE 7 - 3: The SQL Membership Provider Element Attributes

 ATTRIBUTE DESCRIPTION

 connectionString The name of the connection string for the
membership database. The default connection
string name is LocalSqlServer .

 applicationName The name of the application under which
membership data is stored. This enables multiple
applications to share a membership database.
Applications with di� erent names have their own
membership entries. Applications with identical
names will share membership entries.

 commandTimeout The number of seconds the provider will wait for a
SQL command to “ nish before timing out.

 enablePasswordRetrieval If true , the membership provider will allow the
retrieval of passwords. This is not supported if
the password format is Hashed .

 enablePasswordReset Speci“ es if the membership provider will allow
password resets. The SQL membership provider
defaults to true .

 maxInvalidPasswordAttempts The number of maximum password attempts
allowed before a user account is locked out.

 minRequiredNonAlphanumericCharacters The number of special characters that must be
present in a password.

 minRequiredPasswordLength The minimum length of a valid password.

 passwordAttemptWindow The number of minutes during which failed
password attempts are tracked. Entering an invalid
password resets the window. The default value is
10 minutes.

 passwordStrengthRegularExpress Speci“ es a regular expression used to validate
password strength.

 requiresQuestionAndAnswer Speci“ es if the membership provider will require a
password to a special question to reset passwords.

 requiresUniqueEmail Speci“ es if an email address must be unique when
a new account is created.

 passwordFormat Speci“ es the format of the stored password. This
may be a value of Clear , Hashed , or Encrypted .
This defaults to Hashed .

 Adding Authentication in ASP . NET ❘ 165

166 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

The sample web.config in Listing 7 -7 removes the need for a secret question and answer, and
loosens the password requirements. These settings will be used by the Visual Studio administration
tool and by the CreateUserWizard control. You should note that changing the settings will not
change any existing users. If you increase the minimum password complexity, any user already in
the system will still be allowed to use his or her existing password.

 LISTING 7 - 7: Confi guring ASP.NET to use an existing, prepared membership database

 < configuration >

...

 < system.web >

...

 < membership >

 < providers >

 < clear/ >

 < add name="AspNetSqlMembershipProvider"

 connectionStringName="LocalSqlServer"

 enablePasswordRetrieval="false"

 enablePasswordReset="true"

 requiresQuestionAndAnswer="false"

 applicationName="/"

 requiresUniqueEmail="true"

 passwordFormat="Hashed"

 maxInvalidPasswordAttempts="3"

 minRequiredPasswordLength="5"

 minRequiredNonalphanumericCharacters="0"

 type="System.Web.Security.SqlMembershipProvider,

 System.Web, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a" / >

 < /providers >

 < /membership >

...

 < /system.web >

 < /configuration >

 Creating Users Programmatically

You are not limited to using the server controls for creating users. ASP.NET provides you with the
Membership API to perform this task. The API includes the CreateUser method, with four possible
signatures:

Membership.CreateUser(username, password)

Membership.CreateUser(username, password, email)

Membership.CreateUser(username, password, email, passwordQuestion,

 passwordAnswer, isApproved, status)

Membership.CreateUser(username, password, email, passwordQuestion,

 passwordAnswer, isApproved, providerUserKey,

 status)

Because the Membership class is static, you don ’t need to create an instance; you just use it directly.
If you use one of the signatures that has a status parameter, this is a ByRef parameter and returns
one of the System.Web.Security.MembershipCreateStatus values, indicating the result of the
method call.

 Supporting Password Changes and Resets

ASP.NET provides two more controls for common actions: the PasswordRecovery control and the
ChangePassword control.

 The PasswordRecovery control provides the functionality to retrieve or reset a user ’s password
based on his or her username. The new or recovered password is then sent to the user via an
email. Like the CreateUserWizard control, the PasswordRecovery control honors the provider
confi guration settings, and allows you to override the email sent by setting the MailDefinition
property. The control automatically replaces < %UserName% > and < %Password% > with appropriate
values before sending the email.

If your passwordFormat is confi gured to Hashed (see Table 7 -3), only password resets are
supported. If your format is Encrypted or Clear, then password recovery is supported. Obviously,
Encrypted is the most secure option if you wish to support password recovery — encryption uses
the machine key in the web.config fi le as its key. If you don ’t set one manually a machine key will
be automatically generated when your application starts. The machine key is also used to protect
ViewState. Listing 5 -1 in Chapter 5 shows you how to generate a new machine key and use it. If you
are running your application on multiple Web servers, the machine key on each Web server must match.

 The ChangePassword control, not surprisingly, allows an authenticated user to change his or her
password, confi rming an existing password. If a user uses this control but is not authenticated,
the user will be authenticated fi rst, and then his or her password will be changed. Like the
PasswordRecovery control, it honors the membership confi guration, and can send a confi rmation
email to the user ’s email address.

 Windows Authentication

In contrast to forms authentication, Windows authentication does not take much ASP.NET
confi guration and requires no user controls. This is because the usernames and passwords are
managed by Windows, and the authentication is handled by IIS and the browser. Windows
authentication has the advantage that, if an application is deployed into an intranet environment
and IIS is confi gured correctly, any user logged into the domain will not need to authenticate
manually. You saw this type of automatic login at the beginning of this chapter.

Windows authentication is confi gured by setting the authentication mode attribute to “ Windows ” :

 < system.web >

 < authentication mode="Windows" / >

 < /system.web >

The Visual Studio test Web server takes care of everything for you. But once you move your Web
site to IIS, you must confi gure IIS itself to perform authentication.

 Adding Authentication in ASP . NET ❘ 167

168 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Confi guring IIS for Windows Authentication

To confi gure IIS to perform authentication, start the IIS Manager application and expand the Sites
tree. Click on the Web site you wish to edit and then select the Authentication icon to see the dialog
shown in Figure 7 -5.

FIGURE 7-5: Con“ guring IIS Authentication

 As you can see from Table 7 -4, IIS supports a number of types of authentication methods, but it is
the user that sees the difference, not your code.

 TABLE 7 - 4: Common IIS Authentication Types

 AUTHENTICATION TYPE DESCRIPTION

 Anonymous Allows any user to access any public content. This is enabled by
default.

 Basic Authentication Requires a valid username and password before access is granted
using HTTP authentication, part of the HTTP speci“ cation. The
prompt appears as a dialog in the browser. This should only
be used over a secure connection as usernames and passwords
are sent as unencrypted plain text.

 Digest Authentication Uses a Windows domain controller to authenticate users. This is
stronger than basic authentication.

 Windows Authentication This provides automatic logins within an intranet environment.

If you are working with Windows authentication, you can access specifi c Windows account
properties in your code by using the WindowsIdentity object from the System.Security.Princip
namespace. Listing 7 -8 shows you the common properties of the WindowsIdentity class.

 LISTING 7 - 8: Viewing the properties of the WindowsIdentity

 < %@ Page Language="C#" % >

 < %@ Import Namespace="System.Security.Principal" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head id="Head1" runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < h1 > Hello Authenticated user. < /h1 >

 < p > User Name < % = User.Identity.Name % > < /p >

 < p > Is Authenticated < % = User.Identity.IsAuthenticated % > < /p >

 < p > Authentication Type < % = User.Identity.AuthenticationType % > < /p >

 < hr / >

 < p > Windows Authentication Type

 < %= WindowsIdentity.GetCurrent().AuthenticationType % > < /p >

 < p > Name

 < %= WindowsIdentity.GetCurrent().Name % > < /p >

 < p > Is Authenticated

 < %= WindowsIdentity.GetCurrent().IsAuthenticated % > < /p >

 < p > Is Anonymous

 < %= WindowsIdentity.GetCurrent().IsAnonymous % > < /p >

 < p > Is Guest

 < %= WindowsIdentity.GetCurrent().IsGuest % > < /p >

 < p > Is System

 < %= WindowsIdentity.GetCurrent().IsSystem % > < /p >

 < p > Impersonation Level

 < %= WindowsIdentity.GetCurrent().ImpersonationLevel.ToString()

 % > < /p >

 < p > Group membership: < /p >

 < p > < % foreach (var group in WindowsIdentity.GetCurrent().Groups)

 {

 Response.Write(group.Value + " < br > ");

 } % > < /p >

 < /form >

 < /body >

If you run this code, you will see something like the Figure 7 -6. You will notice that the groups
are not Windows group names, but are instead strings. These strings are Security Identifi ers
(SIDs). Checking group membership is covered in the later section of this chapter, “Authorization
in ASP.NET. ”

 Adding Authentication in ASP . NET ❘ 169

170 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

FIGURE 7-6: The WindowsIdentity properties

ADDING AUTHENTICATION TO INTERNET INFORMATION SERVER

If you don ’t see all the authentication options shown in Figure 7 -6, it may be because
you have not installed them. By default, IIS7 does not install many features — it
doesn ’t even enable ASP.NET support.

To add features to IIS on Vista, open the Control Panel, choose the Programs
option, and click “Turn Windows features on or off. ” Expand the “World Wide
Web ” settings, and then expand the “Security ” settings. Tick the authentication
options you would like to use.

In Windows 2008, authentication is part of the role confi guration. Using the Server
Manager, add the “Web Server (IIS) ” role. This will allow you to choose the various
authentication methods. If you already have IIS installed, you can expand the
roles tree. Select “Web Server (IIS) ” and then use “Add Role Services ” to add the
various authentication types.

Certain authentication types may not be available to you, depending on your com-
puter confi guration. For example, Client Certifi cate authentication is not available
unless your computer is part of an Active Directory.

 Impersonation with Windows Authentication

Using Windows authentication offers the advantage of impersonation. By default, IIS is confi gured to
run your applications as a build in the Windows account, Network Service. This account is limited
in the access it has to resources on the server, and cannot access resources on other computers at all.

You can change the account used by confi guring the application pool, but what if you want to run
under the identity of an authenticated user (for example, to authenticate as that user against a SQL
server or a network resource)? Listing 7 -9 shows you how to discover the three types of identity a
page can have.

 LISTING 7 - 9: Discovering the underlying IIS Windows account

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head id="Head1" runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < h1 > Please run this sample under IIS < /h1 >

 < p > Page Identity < % = User.Identity.Name % > < /p >

 < p > Windows Identity

 < %= WindowsIdentity.GetCurrent().Name % > < /p >

 < p > Thread Identity < %= Thread.CurrentPrincipal.Identity.Name % > < /p >

 < /form >

 < /body >

 < /html >

 If you run this code using the Visual Studio test server, you will see your own login details for
every identity (assuming you have Windows authentication enabled in the web.config fi le).
But if you place the code on an IIS server, confi gured for anonymous access, you will see a
different behavior — the page and thread identity are blank, and the Windows identity is
NT AUTHORITY\NETWORK SERVICE .

 If you confi gure your new IIS application to use integrated authentication and reload the page,
you will see that the Page and Thread identities are now the account you authenticated with, but
the Windows identity still remains as the Network Service account. This is the account used to
authenticate against other network resources — so why hasn ’t it changed?

For security reasons NTLM credentials cannot hop between servers or services, so if you try to, for
example, login to a SQL server using Trusted Connections you will fi nd that the user account used
will be the application pool identity. So what can you do? If you want to pass the user ’s identity to
another system then you need to wrap the call in the following code

using (((WindowsIdentity)HttpContext.Current.User.Identity).Impersonate())

{

 // Perform database or network access here

}

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 Adding Authentication in ASP . NET ❘ 171

172 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 AUTHORIZATION IN ASP.NET

Now that you have authenticated users, you can continue to the next step: authorizing access to
resources. In Listing 7 -2 earlier in this chapter, you already made use of the authorization element in
the web.config fi le:

 < authorization >

 < deny users="?"/ >

 < /authorization >

It is this element that controls access to your resources — but how do you use it? Create a new Web
application and replace the web.config fi le with Listing 7 -10.

 LISTING 7 - 10: Denying access to all users with web.confi g

 < ?xml version="1.0"? >

 < configuration >

 < system.web >

 < authentication mode="Windows" / >

 < authorization >

 < deny users=" * "/ >

 < /authorization >

 < /system.web >

 < /configuration >

In this example, the web.config fi le has confi gured authentication to use Windows -based
authentication, and also has an authorization confi guration. The < authorization > element is used
to defi ne what users can access the resources in the current directory or any of its subdirectories.
The < deny > element in the example specifi es that all users, regardless of their authentication state,
are denied access. If you try to browse to a page in your new Web site, you will receive an “Access is
denied ” error.

In most instances, you will want to allow some users access to your resources. To do this, you use
the < allow > element. Let ’s start off by allowing a single user through.

Listing 7 -11 shows the use of the < allow > element to grant access to the barryd user in the WROX
domain. < allow > elements take precedence over < deny > elements. If you replace the username with
your own username, you will see that you can now browse to pages on your Web site. However,
allowing users by name is not the most scalable access control method — which is where the
concept of roles comes in. First, however, you should examine the < allow > and < deny > settings.

 LISTING 7 - 11: Allowing a single user access with web.confi g

 < ?xml version="1.0"? >

 < configuration >

 < system.web >

 < authentication mode="Windows" / >

 < authorization >

 < allow users="WROX\barryd" >

 < deny users=" * "/ >

 < /authorization >

 < /system.web >

 < /configuration >

 Examining < allow > and < deny >

 The < allow > and < deny > attributes allow you to control who can access your resources. Each
element supports the following three attributes:

 users — Enables you to specify a list of users by their domain and/or name.

 roles — Enables you to specify groups of users that allowed or denied access.

 verbs — Enables you to allow or limit access based on the HTTP verb of the request.

 When using any of these attributes, you can use the asterisk (*) as a wildcard. For example, the
following confi guration line will allow access to any user in roles :

 < allow roles=" * " >

You can also use the question mark (?) with the users attribute to specify unauthenticated users.
For example, the following line will deny access to any unauthenticated user:

 < deny users="?" >

When adding users, roles, or verbs, you can specify multiple values in two ways. You can specify
these in separate elements, as shown here:

 < allow users="theskeet" >

 < allow users="plip" >

Or, you can provide them as a comma -separated value, as shown here:

 < allow users="theskeet, plip" >

By default, the global web.config fi le has a rule that allows all access to all resources. When locking
resources, you should override this default rule by starting with a < deny > setting — either all users
 < deny users= “ * ” / > or all unauthenticated users < deny users= “ ? ” /> — and then add allowed
users, groups, or verbs. This is another example of whitelisting values, rather than working from a
blacklist.

 The < verbs > confi guration is useful for read -only resource directories, such as a directory
containing static HTML, images, or other resources that do not contain HTML forms. By
blocking all verbs and then allowing the GET verb, you are protecting your application against any
undiscovered bugs that might occur should one of those resources cause unintended consequences
(if, for example, an attacker used it as the target for a form submission). If you do not start with the
block all rule, then it would be possible to bypass your rules by verb tampering, a technique detailed
by Arshan Dabirsiaghi in his whitepaper “Bypassing Web Authentication and Authorization with
HTTP Verb Tampering, ” which you can fi nd at http://www.aspectsecurity.com/documents/
Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf .

➤

➤

➤

 Authorization in ASP.NET ❘ 173

174 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Role - Based Authorization

As you may realize, confi guring access by listing every single user your Web site may have is not a
scalable solution, nor is it best practice. Instead, you should use role -based authentication. Roles
are containers for any number of users. For example, a forum application may have a role of
Moderators who are allowed to hide or close threads. You can use roles to allow or deny access
to a directory of resources using the roles attribute, or you can programmatically check role
membership during the execution of your code.

 Confi guring Roles with Forms-Based Authentication

 To enable roles for forms authentication, you simply set the enabled attribute for the
 < roleManager > element in web.config to be True , as shown in Listing 7 -12. It is disabled by
default to avoid breaking changes for users migrating from ASP.NET 1.0.

 LISTING 7 - 12: Enabling roles with forms authentication

 < ?xml version="1.0"? >

 < configuration >

 < system.web >

 < roleManager enabled="True"/ >

 < authentication mode="Forms" / >

 < authorization >

 < deny users="?"/ >

 < /authorization >

 < /system.web >

 < /configuration >

 The roleManager provider acts a lot like the membership provider — you can let ASP.NET create
the database for you, or use the aspnet_regsql utility to confi gure an existing database. If you are
using an existing database, you must add a < providers > element to the < roleManager > section
in your web.config fi le to use your custom connection string, and then specify your new provider
name, as shown in Listing 7 -13. The < roleManager > element also allows confi guration of various
settings, as shown in Table 7 -5.

 LISTING 7 - 13: Confi guring the role manager for a custom connection string

 < system.web >

 < roleManager

 enabled = "true"

 createPersistentCookie = "false"

 cacheRolesInCookie = "false"

 cookieName = ".ASPXROLES"

 cookieTimeout = "30"

 cookiePath = "/"

 cookieRequireSSL = "false"

 cookieSlidingExpiration = "true

 cookieProtection = "All"

 defaultProvider = "MyCustomRoleProvider"

 domain = "" >

 < providers >

 < add name="MyCustomRoleProvider ”

 connectionStringName="MyConnectionString"

 applicationName="/"

 type="System.Web.Security.SqlRoleProvider, System.Web,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a ” / >

 < /providers >

 < /roleManager >

 < /system.web >

 TABLE 7 - 5: The < roleManager > Element Attributes

 ATTRIBUTE DESCRIPTION

 enabled If true , the role manager is enabled.

 cookieName This is the name of the cookie used by the role manager. By
default, this is .ASPXROLES . This can be used to separate multiple
applications within the same Web site, like the path setting.

 createPersistentCookie Speci“ es if the role manager cookie should be persistent. This is
not advisable for security reasons.

 cacheRolesInCookie De“ nes if the roles for a user can be cached in the role manager
cookie. This is more scalable because ASP.NET does not have to
retrieve roles with every request. However, it is more insecure. If
the role cookie protected against changes, then attackers could
edit their cookie to put themselves into a role. If the cookie is not
encrypted, then attackers could view the roles they are in.

 path Speci“ es the path for the role manager cookie. The default
value is / , and it is unlikely you will want to change this. If you
have multiple Web applications running on a single site (for
example http://example.com/app1/ and http://example
.com/app2/) and you want to have a user login separately for
each application, then you can set the path to match the directory
containing your application.

 cookieTimeout Speci“ es the amount of time (in minutes) a role manager cookie
lasts for. The default value is 30 minutes.

 domain Speci“ es the domain name for the role manager cookie.

 cookieSlidingExpiration If set to true , the role manager cookie expiry will be reset with
every request.

 requireSSL Speci“ es if the role manager cookie can only be transmitted over
SSL connections.

 Authorization in ASP.NET ❘ 175

176 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Using the Confi guration Tools to Manage Roles

The easiest way to create roles during development is via the ASP.NET confi guration tool, available
from Project ➪ ASP.NET Confi guration (Figure 7 -7). This will open the administration site in your
Web browser. Click on the Security Tab and then choose “Create or Manage Roles. ” Once you have
added roles to your application, you can add existing users, or, when adding new users with the
confi guration tool, you can choose the roles they belong to.

FIGURE 7-7: Managing roles with the ASP.NET Con“ guration tool

As with users, the IIS Manager tool also allows you to create and manage roles. In the IIS Manager,
select your Web site and then double -click the “.NET Roles ” icon to produce a screen similar
to Figure 7 -8 where you can add and delete roles. You can view the users in a role by clicking
“Manage ” link beside an existing role, where you can double -click the user to adjust the user ’s role
membership. If you want to add a user to a role, open the “.NET Users ” screen, double -click your
user, and select the roles you wish them to have.

 Managing Roles Programmatically

Of course, on a live system, Visual Studio ’s ASP.NET confi guration tool is not available, and
manually managing roles with the IIS administration tool is not a scalable solution. There are no
user controls for role management, and you don ’t want users adding themselves to roles. Instead,
you can use the Roles object to programmatically manage roles and their members. Listing 7 -14
demonstrates how to use the Roles object to list existing roles and create new roles.

 LISTING 7 - 14: Viewing and creating roles programmatically

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < script runat="server" >

 protected void Page_Load(object sender, EventArgs e)

 {

 LoadRoles();

 }

 continues

FIGURE 7-8: Managing roles with IIS Manager

 Authorization in ASP.NET ❘ 177

178 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

LISTING 7-14 (continued)

 protected void Submit_OnClick(object sender, EventArgs e)

 {

 Roles.CreateRole(newRole.Text);

 LoadRoles();

 }

 private void LoadRoles()

 {

 existingRoles.DataSource = Roles.GetAllRoles();

 existingRoles.DataBind();

 }

 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < h1 > Create a new role < /h1 >

 < p > Role Name: < asp:TextBox runat="server" ID="newRole" / > < /p >

 < p > < asp:Button runat="server" ID="submit" Text="Create"

 OnClick="Submit_OnClick" / > < /p >

 < /div >

 < div >

 < h1 > Existing Roles < /h1 >

 < asp:Repeater runat="server" ID="existingRoles" >

 < HeaderTemplate > < ul > < /HeaderTemplate >

 < FooterTemplate > < /ul > < /FooterTemplate >

 < ItemTemplate >

 < li > < %# Container.DataItem % > < /li >

 < /ItemTemplate >

 < /asp:Repeater >

 < /div >

 < /form >

 < /body >

 < /html >

You can see from the sample that the Roles class is static; you don ’t need to create an instance of
it. To create a role, you call CreateRole that takes a single parameter, the role name, which must
be unique. To list all the current roles you call GetAllRoles(), which returns an array of strings
containing the role names.

If you want to delete a role, you can use DeleteRole(). This method has two signatures:

Roles.DeleteRole(string rolename)

Roles.DeleteRole(string rolename, boolean throwOnPopulatedRole)

 The fi rst option simply deletes the specifi ed role. The second option will throw an exception if you
try to delete a role that has members.

 Managing Role Members Programmatically

Of course, a role is useless without any members. To add a single user to a role, you use
AddUserToRole(). To add a user to multiple roles, you use AddUserToRoles() .

Roles.AddUserToRole(string username, string rolename)

Roles.AddUserToRoles(string username, string[] roleNames)

To add multiple users to a role, you use AddUsersToRole(). To add a user to multiple roles, you use
Roles.AddUsersToRoles() .

Roles.AddUsersToRole(string[] usernames, string rolename)

Roles.AddUsersToRoles(string[] usernames, string[] roleNames)

You can get the users of a particular role by using the GetUsersInRole() method, which returns an
array of strings containing the role members ’ usernames.

 Roles.GetUsersInRole(string rolename)

Alternatively, if you want to get the roles for a particular user, you use GetRolesForUser(), which
returns an array of strings containing the role names a user belongs to.

 Roles.GetRolesForUser(string username)

Finally, should you wish to delete a single user from a role, you use RemoveUserFromRole(), or, to
remove a user from multiple roles, you use RemoveUserFromRoles() .

Roles.RemoveUserFromRole(string username, string rolename)

Roles.RemoveUserFromRoles(string username, string[] roleNames)

To remove multiple users from a role, you use RemoveUsersToRole(). To remove users from
multiple roles, you use Roles.RemoveUsersToRoles() .

Roles.RemoveUsersToRole(string[] usernames, string rolename)

Roles.RemoveUsersToRoles(string[] usernames, string[] roleNames)

 Roles with Windows Authentication

 As with forms authentication, roles with Windows authentication, do not take much ASP.NET
confi guration. You simply enable the role manager in your web.config fi le. When Windows
authentication is used, roles directly map to the user ’s Windows group membership. For example, if
a user account is in the WROX Active Directory and is a member of the Editors group, ASP.NET will
treat this as being part of the WROX\Editors role.

Because group membership is provided by the Windows user management functionality, you cannot
add or remove roles, or add or remove members from roles unless you implement your own Role
Manager provider.

 Authorization in ASP.NET ❘ 179

180 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Limiting Access to Files and Folders

 So far, you have seen examples of how to stop all users and all authenticated users from accessing
all resources, as well as how to allow specifi c users access to all resources. You may want to be
more granular in your access rules, denying or allowing access to certain fi les, or using roles in your
access roles.

As with users and roles, you can use the ASP.NET Confi guration tool (Figure 7 -9) or the IIS
administration tool (Figure 7 -10) to create access rules for your application.

FIGURE 7-9: Adding a new authorization rule in the ASP.NET Con“ guration tool

 To use the ASP.NET confi guration tool, highlight your project, and then start it via Project ➪ ASP.
NET confi guration. Then select the Security link in the browser.

The IIS Management tool creates rules for IIS Authorization. These run with every request, even if
the resource is not mapped to managed code (for example, an .aspx or .svc page). This means that
IIS authorization rules can protect static results, such as .JPG , .PNG , .PDF, and so on.

IIS authorization rules are also evaluated differently. Table 7 -6 shows the differences between the
two types.

 TABLE 7 - 6: Di� erences Between ASP.NET and URL Authorizations in IIS7

 DIFFERENCE ASP.NET URL AUTHORIZATION IIS7 URL AUTHORIZATION

 Rule Evaluation Order Lowest level up Evaluates from parent down

 Evaluated in order of appearance Deny rules evaluated “ rst, then
evaluated in order of appearance

 UI No IIS7 Management UI Managed by the Authorization Rules UI

 Con“ guration Section system.web/authorization system.webServer/security/
authorization

 Content Applies only to resources mapped
to a managed handler

 Applies to all resources

FIGURE 7 - 10: Adding a new IIS authorization rule in the IIS Management tool

 Authorization in ASP.NET ❘ 181

182 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

Both these tools act upon the web.config fi le and place the rules they generate into an
 < authorization > section. You can examine these rules by opening your web.config fi le.

 Of course, you may fi nd it easier to create rules by hand, rather than with a tool. You ’ve already
seen how to protect folders. To recap, the following confi guration will stop all users from accessing
any resources in the current directory or any of its subdirectories:

 < authorization >

 < deny users= “ * “ / >

 < /authorization >

The following authorization rule set will reject any unauthenticated users accessing resources in the
current directory and any subdirectories:

 < authorization >

 < deny users="?"/ >

 < /authorization >

You can also allow specifi c users access, as shown in the next rule set, which will only allow access
to the barryd and plip user accounts:

 < authorization >

 < allow users="barryd, plip" >

 < deny users=" * "/ >

 < /authorization >

As discussed earlier, using individual usernames is not a scalable solution. Instead, you can use
roles as a basis for access. For example, the following rule set will allow access to anyone in the
 “ Finance ” role:

 < authorization >

 < allow roles="Finance" >

 < deny users=" * "/ >

 < /authorization >

Finally, you can combine users and roles. The following rule set allows access to anyone in the
 “ Finance ” and “ Administrators ” role, as well as the named users barryd and plip :

 < authorization >

 < allow roles="Finance, Administrators" >

 < allow users="barryd, plip" >

 < deny users=" * "/ >

 < /authorization >

If you want to apply more granularity and control access to a single resource, you use the
 < location > element. This element sits outside of the < system.web > settings, and initiates a new
system.Web confi guration document for that specifi c location.

For example, the following rule set has no authentication at all for a directory, but turns on
Windows authentication for the admin.aspx page in that directory, and limits access to members of
the Administrators group:

 < configuration >

 < system.web >

 < authentication mode="None" / >

 < /system.web >

 < location path="admin.aspx" >

 < system.web >

 < authentication mode="Windows" / >

 < authorization >

 < allow roles="Administrators" / >

 < deny users=" * "/ >

 < /authorization >

 < /system.web >

 < /location >

 < /configuration >

 If you want to change rules in subdirectories, simply create another web.config fi le in the
subdirectory with appropriate rules. For ASP.NET authorization, these rules will be evaluated
before any rules in parent directories. For IIS authorization, the parent rules will be evaluated fi rst.

 NOTE One thing to note is that access rules will not apply to a forms authentica-
tion login page (by default, login.aspx). After all, stopping users from accessing
that would be rather unhelpful!

 Checking Users and Roles Programmatically

At some point, you may wish to vary your page output based on a user ’s identity or role membership
You have already discovered how to do this — you can access a user ’s authenticated identity using
User.Identity() and a user ’s role membership via User.IsInRole() .

A common scenario for programmatic checking is to show or hide controls based on a user ’s
identity — for example, adding a “Delete ” option to a form if a user is an administrator. As part of
a “defense in depth ” strategy, it is important that you check your rules during code execution, and
not just when creating the UI. For example, if you had an ASP.NET button for a delete function and
showed it based on a user ’s role during Page_Load(), you should also check that the user belongs to
the role in the method that handles the OnClick() event.

 Securing Object References

Checking a user ’s identity name is essential to avoiding the Insecure Direct Object Reference
vulnerability. Chapter 4 introduced you to how query strings can be edited to manipulate object
references, and how you can use a GUID or other indirect object reference to avoid enabling

 Authorization in ASP.NET ❘ 183

184 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

attackers to explore resources in your Web site. If you have resources that belong to a user (such as
a message, a document, or account details), then you should also store the owner of these resources,
and then check User.Identity.Name before serving them. This secures the object reference,
lessening the risk of attack if a valid object reference is discovered.

 A CHECKLIST FOR AUTHENTICATION AND AUTHORIZATION

The following is a checklist of items to consider when adding authentication and authorization to
your application:

 Do not roll your own unless you have to. — There are some cases where you may wish to
develop your own authentication and authorization functions, but doing so is fraught with
potential mistakes. If you have an existing user database, then consider implementing the
membership and roles provider models. This will enable you to use the standard methods to
control access.

 Encourage your users to logout. — Persistent authentication can lead to CSRF attacks. For
high -value systems, encourage users to log out by providing a visible and consistent logout
button and do not provide “Remember Me ” functionality.

 Always start with a deny access role. — Being specifi c in who you allow to access resources
is safer than specifying who does not have access.

 Be aware of the differences between ASP.NET and IIS authorization rules. — IIS autho-
rization rules run against every resource. ASP.NET authorization rules will only protect
resources mapped to a managed code handler.

 If you use programmatic authorization checks to hide or display controls, ensure those
authorization checks run during execution of the underlying code. — If you show or hide
user elements such as buttons based on roles or usernames, check again in any method
bound to those buttons such as an OnClick() event.

 If resources belong to a user check the current user before serving them. — If a resource
such as a message is for a particular user then check the current user has access to that
resource.

➤

➤

➤

➤

➤

➤

#8
 Securely Accessing Databases

At some point, it is likely your Web application will need to use a database. And, as soon as
you introduce a database, you introduce a new a set of potential vulnerabilities.

In this chapter you will learn about the following:

 How simple data queries can expose your data

 How to safely query databases

 How to secure your SQL Server database

The vulnerability described in this chapter is known as SQL injection . It is part of a
family of injection vulnerabilities that attacks can use to “inject ” extra syntax into
external commands.

It is an extremely common problem on the Web. In June 2008, tens of thousands of
sites were compromised via SQL injection, including those of the security vendor
Computer Associates. The attack injected commands that caused the applications
to append JavaScript to every page. This JavaScript used a two -year old Windows
vulnerability to infect visitors to the site with malware. You can read further
details at http://www.computerworld.com.au/article/202731/mass_hack_
infects_tens_thousands_sites. The attack did not use a vulnerability in
ASP.NET or SQL Server, but rather in the application running on each Web site.

Because this book is fi rmly focused on ASP.NET and the Microsoft technology stack, the
SQL injection attacks are demonstrated on Microsoft SQL Server. However, nearly all
database servers are vulnerable to injection attacks. The mitigations in this chapter are equally
applicable to Oracle, PostgreSQL, and, to a lesser extent, MySQL. The more fully featured a
database server is, the more harm can be done with a SQL injection attack.

➤

➤

➤

186 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

The following samples use SQL Express, included as part of the Visual Studio install. If you
are using Visual Studio Express editions, you will need to download SQL Express separately.
You may also fi nd the SQL Express Management Studio useful. You can download it
from http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE - 4BD1 -
 4E3D - 94B8 - 5A0F62BF7796 .

NOTE This chapter is covers SQL from a developer ’ s point of view, not that of
an administrator. You may like to examine Beginning Microsoft SQL Server 2008
Administration by Chris Leiter, Dan Wood, Michael Cierkowski and Albert
Boettger (Indianapolis: Wiley Publishing, 2009), which provides a good
 introduction to administrating and securing SQL Server.

 WRITING BAD CODE: DEMONSTRATING SQL INJECTION

The purpose of this example is to demonstrate a simple SQL injection attack. The sample code is
representative of typical mistakes that developers who are not aware of SQL injection make.

TRY IT OUT Writing a SQL Injection Vulnerable Web Page

 1. Create a new Web application in Visual Studio.

2. In the Solution Explorer window, right -click the App_Data folder and click on Add New. Choose
SQL Server Database from the Add New Item dialog, and then click the Add button using the
default fi lename of database1.mdf .

Visual Studio will create a new database fi le in your project and add it to the Server Explorer
window.

3. In the Server Explorer window, expand and connect to the new database. Right -click the Tables
folder and choose Add New Table.

4. In your table defi nition, create two columns called
username and password with a data type of
nvarchar(25) . Uncheck Allow Nulls for each column.
Create a primary index on the username fi eld by
selecting the column and clicking the key icon in Table
Designer toolbar then save the table with a name of
Logins. Your table should look like the one shown in
Figure 8 -1.

5. Close the table editor and return to Server Explorer, then double -click on the new Logins table.
In your new table, add a username of example and a password of wrox . You can do this by right -
clicking the table in Server Explorer, choosing Show Table Data, and then entering a new row
with the appropriate values.

FIGURE 8-1: The sample database table

6. Now, return to Solution Explorer and open the default.aspx fi le. Edit this fi le and replace the
default contents with the following code:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default" % >

 < !DOCTYPE html PUBLIC " - //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1 - transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > SQL Injection Demonstration < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < asp:Label ID="Label1" Text="User Name: " runat="server"

 AssociatedControlID="Username" > < /asp:Label >

 < asp:TextBox ID="Username" runat="server" > < /asp:TextBox > < br / >

 < asp:Label ID="Label2" Text="Password: " runat="server"

 AssociatedControlID="Password" > < /asp:Label >

 < asp:TextBox ID="Password" runat="server" > < /asp:TextBox > < br / >

 < asp:Button ID="submit" runat="server" Text="Submit"

 onclick="submit_OnClick"/ > < br / >

 < p > < strong >

 < asp:Label ID="Result" runat="server" > < /asp:Label >

 < /strong > < /p >

 < /form >

 < /body >

 < /html >

 7. Change the contents of the code behind fi le to be the following:

using System;

using System.Data;

using System.Configuration;

using System.Data.SqlClient;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void submit_OnClick(object sender, EventArgs e)

 {

 string sqlCommand = "select * from logins where username = '" +

 Username.Text + "' and password = '"+ Password.Text + "'";

 using (SqlConnection connection =

 new SqlConnection(ConfigurationManager.ConnectionStrings["database"].

 ConnectionString))

Writing Bad Code: Demonstrating SQL Injection ❘ 187

188 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

 {

 connection.Open();

 SqlCommand command = new SqlCommand(sqlCommand, connection);

 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())

 Result.Text = "Welcome " + reader["username"];

 else

 Result.Text = "Login failed.";

 connection.Close();

 }

 }

}

8. Next, in your web.config fi le, you must add a connection string for the database. Change the
connectionStrings element to the following:

 < connectionStrings >

 < add name="database"

 connectionString="Server=.\SQLExpress;

 AttachDbFilename=|DataDirectory|database1.mdf;

 Database=demoDatabase;

 Trusted_Connection=Yes; "/ >

 < /connectionStrings >

9. Once this is complete, choose Debug ➪ Start Debugging (or press F5). If you are prompted that
the page cannot be run in debug mode, allow Visual Studio to modify the web.config .

10. Finally, enter example as the username and wrox as the password. Click Submit. You should see
the message “Welcome example ” below the Submit button. Try again with random data to see the
“Login failed ” message.

NOTE At this point, if a SQL error about attaching to the database is thrown,
you may need to detach Visual Studio from your database before running your
code. Right - click on the database in Server Explorer, choose Detach Database,
and run the application again.

You may also need to edit the security on the App_Data directory to allow SQL
Express to read the database. To do this, you must know which user account
SQL Express is running as. Open the Services administration tool from the
Windows Start menu, and examine the Log On As column for the SQL Server
(SQLEXPRESS) service. Typically, it will be either Local Service or Network
Service . You now must browse to the Web site root directory for your project
in Explorer, right - click the App_Data directory, and select the Security tab. Click
Edit, and then click Add. In the object name fi eld, enter the name of the account
SQL Express runs under, and click OK. Then select the account in the “ Group or
User names ” list and check the Allow box beside Full Control in the permissions
list. Click Apply to close the Permissions window, and then click OK.

This initial attempt at a login page is vulnerable to SQL injection. If you examine the code, you can
see that it builds a SQL query by inserting the text from the username fi eld and the password fi eld.
Using the example login, the SQL command will be the following:

select * from logins where username = 'example' and password = 'wrox'

This is perfectly valid SQL. But what happens when you try a username of O'Leary? You get an
exception thrown, because of the apostrophe in the username, which unbalances the query. Using
this fact, an attacker can submit specially crafted values to modify the meaning of the query. If you
enter ' or 1=1-- in the username fi eld and anything in the password fi eld, the SQL command now
becomes the following:

select * from logins where username = '' or 1=1 --' and password = ' anything '

 The -- sequence in SQL marks the beginning of a comment. Anything following that it is ignored.
This means the SQL executed is as follows:

select * from logins where username = '' or 1=1

The inclusion of the or 1=1 clause changes the query further. This expression always evaluates to true ,
so a record will always be returned. Because the code in the login page simply checks for a non -null
record set, the login can be bypassed without a password because of the SQL injection vulnerability.

This vulnerability opens up other possibilities for an attacker. A blank username may not be the best
approach because somewhere in the application the username may be checked to ensure that it is not
a null or empty value. Attackers could try a username they know exists by entering example'-- as
the username. This makes the query as follows:

select * from logins where username = 'example'--' and password = ''

This query in turn reduces to the following:

select * from logins where username = 'example'

If you try this, you will see that the login application will now respond as if a valid login has
occurred. The SQL injection has removed the password check altogether.

As you can see, the combination of an apostrophe to terminate the fi rst equality operator and
the comment delimiter can be used to always return a result, potentially affecting the checks that
happen after the query is run.

 If you haven ’t followed the approaches discussed in Chapter 5 by enabling custom error pages, a
wider problem exists, one that can allow an attack to discover the layout of your database tables
and then run commands against them.

Before attempting to insert or delete data from your database tables, an attacker must know the
table and column names, information not normally exposed to the outside world. So, instead of
attempting to bypass the login page, the attacker attempts to cause an error, using the ' having
1=1-- as his or her username. This turns your query into the following:

select * from logins where username = ' ' having 1=1

Writing Bad Code: Demonstrating SQL Injection ❘ 189

190 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

If you try this attack using the vulnerability in the code, you will see a very detailed error page that
displays the underlying problem — Column 'logins.username' is invalid in the select
list because it is not contained in either an aggregate function or the GROUP BY

clause. As you can see, the error message discloses a table name and the name of a column in that
table. By refi ning the query again and again, adding each newly discovered column to a GROUP BY
clause, an attacker could retrieve all of the column names for the table. Once an attacker has the
column structures, he or she can start to discover the type of data in the columns. For example, the
attacker could enter the following in the username fi eld:

' union select sum(username) from logins--

This attack causes an error message to be displayed that reads Operand data type nvarchar is
invalid for sum operator. From this error message, the attacker can deduce that the username
fi eld is an nvarchar . Once an attacker has the column names and types, he or she can try to
insert data into the underlying table. For example, the attacker could enter the following into the
username fi eld to create a new record in the logins table:

'; insert into logins values('yourUsername', 'yourPassword')--

This is a simple example of how SQL injection can be used to attack a database. The semicolon in
the SQL statement acts as a command separator, much like a colon used to do in BASIC. Anything
after the semicolon is treated as a new command. So now the query becomes two commands:

select * from logins where username = '';

insert into logins values('yourUsername', 'yourPassword')

There are several additional attack vectors. Try entering the following in the username fi eld:

' union select @@version,''--

You can see that the exact version of SQL Server is now displayed on the screen, along with details
about the operating system. As a fi nal trick, enter the following into the username fi eld:

' union select (select * from logins for xml auto), '' from logins --

At fi rst, this doesn ’t appear to do anything. But if you view the source of the HTML page, you
will discover (toward the bottom) that the entire contents of the logins table have been embedded
as XML. This should illustrate to you the importance of not only avoiding SQL injection, but of
hashing passwords, as discussed in Chapter 6.

If you want further details and walkthroughs of advanced SQL injection attacks, Chris Anley of
NGSoftware has a highly recommended whitepaper available from http://www.ngssoftware
.com/papers/advanced_sql_injection.pdf .

 FIXING THE VULNERABILITY

The vulnerability arises because the SQL query is dynamically constructed via string
concatenation. The way to fi x it is to avoid string concatenation entirely and parameterize the
query, or to use stored procedures.

TRY IT OUT Using Parameterized Queries

To parameterize the query, you must fi rst change the query string itself to contain parameters.

1. Open the code behind page again, and make the following highlighted changes to the
submit_OnClick method:

protected void submit_OnClick(object sender, EventArgs e)

{

 string sqlCommand = "select * from logins where username = @username and

password=@password";

 using (SqlConnection connection =

 new SqlConnection(

 ConfigurationManager.ConnectionStrings["database"].ConnectionString

))

 {

 connection.Open();

 SqlCommand command = new SqlCommand(sqlCommand, connection);

 SqlParameter usernameParmameter =

 new SqlParameter("@username", SqlDbType.NVarChar, 25)

 {

 Value = this.Username.Text

 };

 command.Parameters.Add(usernameParmameter);

 SqlParameter passwordParmameter =

 new SqlParameter("@password", SqlDbType.NVarChar, 25)

 {

 Value = this.Password.Text

 };

 command.Parameters.Add(passwordParmameter);

 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())

 Result.Text = "Welcome " + reader["username"];

 else

 Result.Text = "Login failed.";

 connection.Close();

 }

 }

}

2. Now, try the injection queries and see if any produce side effects — they don ’t. Using parameters
takes care of the escaping of any special characters such as apostrophes for you.

The changes made in the preceding “Try It Out” exercise take a SQL query and change it to use
parameters. The query string has changed to specify parameters, as shown here:

string sqlCommand = "select * from logins where username = @username and

 password=@password";

Fixing the Vulnerability ❘ 191

192 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

The ampersand (@) character defi nes a parameter. The parameter names in the preceding query are
@username and @password.

Once you have a parameterized query, you must set the values of the parameters. This is done after
you have constructed a SqlCommand object from the SQL query string, as shown here:

SqlCommand command = new SqlCommand(sqlCommand, connection);

SqlParameter usernameParmameter =

 new SqlParameter("@username", SqlDbType.NVarChar, 25)

 {

 Value = this.Username.Text

 };

command.Parameters.Add(usernameParmameter);

This snippet creates a new SqlParameter instance with a username matching the fi rst parameter in
the query, @username. The type of the parameter is set to NVarChar and its maximum length to 25.
The value of the parameter is set from the Text property of the Username input box. The parameter
is then added to the Parameters collection on the SqlCommand instance. This is all that needs to be
done. ADO.NET takes care of sanitizing the parameter values automatically.

However, there is a drawback to using any kind of direct queries, including parameterized
queries. The underlying schema for the database is still exposed, and the Web application needs
the capability to read (and normally write) to the database tables. This can be a security problem.
Generally, you will want to introduce some sort of access control to your database and prevent non-
administrative users from manipulating raw data, just in case you have vulnerabilities elsewhere.
While you can set permissions on tables, you cannot set permissions on columns. If a user has the
capability to query a table using SQL, then the user can see all the data within it. To control the
columns seen, and the columns you can update, you must turn to stored procedures.

A stored procedure is a SQL routine created and run on the database server, but deliberately
exposed to connecting systems. A stored procedure can simply be a wrapper around Create,
Retrieve, Update, and Delete (CRUD) operations, or it can contain logic of its own, including
auditing data access, performing calculations on the data before it is retrieved, or implementing
other forms of business logic.

TRY IT OUT Using Stored Procedures

Before you can call a stored procedure, you must create it. While SQL2005 and later provides the
capability to write stored procedures in C#, this should be considered a last resort — written when
you must do something on the SQL server that the SQL language does not allow, or does not easily
implement. The SQL language is optimized for data manipulation; C# generally isn ’t.

1. Open the Server Explorer window and connect to the database you created at the beginning of
this chapter. Right -click Stored Procedures and choose Create New Stored Procedure. A new
window will appear, similar to the one shown in Figure 8 -2.

FIGURE 8-2: Creating a stored procedure

Fixing the Vulnerability ❘ 193

 As you can see from this window, you create a stored procedure by executing the CREATE
PROCEDURE SQL command. Change the window contents to be the following:

CREATE PROCEDURE dbo.GetLogin

(

 @username varchar(25),

 @password varchar(25)

)

AS

 SELECT * FROM logins WHERE

 username = @username AND

 password = @password

2. Click the Save toolbar button, or choose File ➪ Save to save the stored procedure to your data-
base. Once you do that, it is then ready to use.

3. Using a parameterized store procedure is much like using a parameterized query, except that you
do not have to specify the parameters when you create a string for the Command object. Open the
code behind page for default.aspx and change the submit_OnClick method to be the following:

protected void submit_OnClick(object sender, EventArgs e)

{

 string sqlCommand = "GetLogin";

 using (SqlConnection connection =

 new SqlConnection(

 ConfigurationManager.ConnectionStrings["database"].ConnectionString))

 {

 connection.Open();

 SqlCommand command = new SqlCommand(sqlCommand, connection);

 command.CommandType = CommandType.StoredProcedure;

 SqlParameter usernameParmameter =

 new SqlParameter("@username", SqlDbType.VarChar, 255)

194 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

 {

 Value = this.Username.Text

 };

 command.Parameters.Add(usernameParmameter);

 SqlParameter passwordParmameter =

 new SqlParameter("@password", SqlDbType.VarChar, 255)

 {

 Value = this.Password.Text

 };

 command.P arameters.Add(passwordParmameter);

 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())

 Result.Text = "Welcome " + reader["username"];

 else

 Result.Text = "Login failed.";

 connection.Close();

 }

}

 You can see that this time you are simply providing the stored procedure name as the SQL
command:

string sqlCommand = "GetLogin";

 There is no SQL statement, logic, or even a parameter list associated with the command. The
other change is to tell the Command object that it is calling a stored procedure:

command.CommandType = CommandType.StoredProcedure;

 You attach the parameters to the stored procedure using the same method as a parameterized
SQL query.

4. Now, try the injection queries again to see if you can produce any side effects. It is possible to
write stored procedures that are vulnerable to SQL injection. This is covered later in this chapter.

 MORE SECURITY FOR SQL SERVER

For most scenarios, either parameterized queries or stored procedures will protect you against SQL
injection. However, there is more you can do to protect your database.

 Connecting Without Passwords

You may have noticed the format of the connection string used previously:

Server=.\SQLExpress;AttachDbFilename=|DataDirectory|database.mdf;

 Trusted_Connection=Yes;

This connection string does not contain usernames or passwords, unlike ones that you may
be using. Instead, it specifi es trusted connections . A trusted connection uses the Windows
authentication to connect, alleviating the need to specify a username and password (although you
should still encrypt your connection strings section using the techniques shown in Chapter 5).

Using trusted connections works well when the database you are connecting to is on the same
machine, assuming the user account you are running under has access to the database. However,
if the database is on another machine, it may not work because, by default, ASP.NET runs under
the context of a local account, Network Service (as discussed in Chapter 2). This is generally why,
in hosted environments, you will be forced to use a connection string that specifi es a username and
password. Hosting companies tend not to use Active Directory, and so an account that exists on the
Web server does not exist on the SQL server.

 If you are not using SQL Server Express, but instead have a full version of SQL Server on your
machine, you must add access for the user account under which your Web site runs. To grant
permissions to an account, you can either use SQL Server Management Studio, or use the SQL
CREATE LOGIN command.

 To use SQL Server Management Studio to grant permissions, start the program, connect to your
database server, and expand the Security folder. If you expand the Login folder, you can see the
current list of users. To add a new user, right -click the Login folder and choose the “New Login . . . ”
menu item. The dialog shown in Figure 8 -3 appears.

FIGURE 8-3: Adding a new user in SQL Server Management Studio 2008

More Security for SQL Server ❘ 195

196 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

To grant access to SQL Server for a Windows account, ensure that the Windows authentication
radio button is selected. Then click the Search button and enter the account name in the select box,
or click the Advanced button and then click Find Now to browse all the available users and groups.
Click OK and you will be returned to the “Login — New ” screen. Select the default database to
which you want the account to have access and click OK. This user account will now have access to
the database as a “public ” SQL user. This means that the new account can only access SQL items
(such as stored procedures, tables, or views) to which the public role has been granted access. You
may have guessed that if you saw Windows groups listed in the search results box, you can add
groups to SQL. When you add a Windows group to SQL, all members of that group will be granted
access.

If you want your ASP.NET applications to be able to connect using Trusted Connections, then you
must grant access to the account they run under. By default, this is Network Service, but you can
change this by changing the Application Pool settings. Chapter 14 provides more information on
how to confi gure application pools.

If you have full control of the hosting environment and want to separate your SQL server from your
Web server, you have two methods to avoid using usernames and passwords.

 Place both machines in an Active Directory . — By placing both machines in an Active
Directory (AD), you can specify that IIS runs under a specifi c account on the AD, and grant
appropriate permissions within SQL to that account.

 Duplicate accounts in a workgroup . — If you are not in an AD, you can use trusted
connections by mirroring accounts. On both machines, create a Windows login account
with the same account name and password. (Obviously, you should use a strong password.)
Then confi gure your ASP.NET process to run under that local user account on the IIS
server, and grant permissions to the mirrored local user on the SQL server. Trusted
connections will now happen using the mirrored accounts.

 SQL Permissions

SQL provides a granular permission mechanism for databases and tables, much like Windows
does for fi les and objects. To perform any action on a database, the connecting account must have
permissions to do so. Table 8 -1 shows the main table -based permissions in SQL Server.

➤

➤

PERMISSION DESCRIPTION

SELECT Allows the user to read data from a table or a view. This permission can
be applied to individual columns within a table or view.

INSERT Allows the user to insert data into a table or view.

DELETE Allows the user to delete data from a table or view.

UPDATE Allows the user to update data in a table or view. Like SELECT, it can also
be applied to individual columns.

EXECUTE Grants permission for a user to execute a stored procedure.

TABLE 8-1: SQL Server Permissions

 SQL also has the concept of roles. By default, new user accounts belong to the Public role for
databases to which they have access. Each role has inherent permissions associated with it — for
example, the DBA role can perform any action on a database.

 Adding a User to a Database

Just because a login exists, that doesn ’t give it access to a database. You must fi rst grant an account
access to the database. You can do this with the following SQL command:

CREATE USER Olle FOR LOGIN Olle;

This command creates a user within the database it is run in — in this example, creating a user
Olle for the login account Olle. But this account cannot do anything without some further work.

 Managing SQL Permissions

To manage SQL permissions, you can either use the SQL Server Management Studio or the GRANT ,
DENY , and REVOKE SQL statements. Knowing and using the SQL statements is useful because you
can include them in your stored procedure scripts, which you should have under source control.

The following example grants the SELECT permission on the Example table or view to the guest
user on my laptop, called Puck. The full name of the Windows guest account on that machine is a
combination of the machine name and the windows account, separated by a \ , (as in PUCK\Guest).

GRANT SELECT ON Example TO PUCK\Guest

To deny the select permission, you would use the following:

DENY SELECT ON Example TO Olle

And, to revoke a previously granted permission, you would use the following:

REVOKE SELECT ON Example TO Olle

However, if you are isolating access to your tables via stored procedures as previously suggested,
you would not want to grant any table permissions at all. Instead, you would want to grant EXECUTE
permissions to a stored procedure, as shown in the following example:

GRANT EXECUTE ON GetLogins TO Olle

 Groups and Roles

As with all permissions, it is better to set permissions to roles, rather than individuals. SQL allows
you to create database roles to which you can add users and grant permissions. You can either user
SQL Management Studio to create rules, or create them in SQL, as shown here:

CREATE ROLE auditors AUTHORIZATION db_owner;

More Security for SQL Server ❘ 197

198 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

Roles must be owned by either a specifi c user or another role. In the previous example, a role
called auditors is created, which is owned by the db_owner role, a built -in SQL role to which the
database owner belongs. You can then add users to a role using the following command:

EXEC sp_addrolemember 'auditors', 'PhilHa'

This would add the user account PhilHa to the auditors group. You can then grant (or deny) rights
to the group rather than individual users, as shown here:

GRANT EXECUTE ON ReadAuditLogin TO auditors

 Least Privilege Accounts

It ’s all too tempting to give your Web application full control over the database. But, as you can see
from the SQL injection attack demonstration, it ’s dangerous. You should give your Web application
the least amount of privileges and permissions it needs to function.

For example, if you are writing a reporting application, then it ’s unlikely your application will
need to write data. So do not give it the ability to do so. You may have tables that contain auditing
information inserted by stored procedures. It ’s unlikely your main application would need to either
read from or write to those tables, although an administration application may need to read the
audit logs. The more privileges you grant to an application, the more scope there is for a successful
attack to affect the database.

If all data access is through stored procedures or permissions, you can use the REVOKE permission
against the underlying tables, including revoking all rights for the Public role so that only database
administrators can access the tables directly.

 Using Views

Under some circumstances, you may need to access the underlying schema for date. For example,
some Object Relationship Mapping tools (ORMs) do not work well with stored procedures, and
some ad -hoc reporting tools require direct access to the schema (that is, the structure of the tables
themselves). A view can be used to enhance security in these circumstances. A view is, in essence, a
virtual table. It does not physically exist, but is the result of a query performed against tables.

 Because a view is query -based, it can be used to restrict access to the base tables. The types of data
views can show include the following:

 A subset of the rows of a base table

 A subset of the columns of a base table

 A subset of both rows and columns of a base table

 A subset of another view, or a combination of views and tables

 Data calculated from a base table (such as a statistical summary)

The permissions on views are entirely separate from the permissions on an underlying table. If, for
example, the Public role were denied all access to the employee table, you could create a view that

➤

➤

➤

➤

➤

retrieves data from that table, grant access to the Public role, and accounts within that role could
see the contents of the view.

For example, the following SQL command creates an employee table:

CREATE TABLE employee(

 EmployeeId INT NOT NULL PRIMARY KEY,

 Surname VARCHAR(30) NOT NULL,

 Firstname VARCHAR(30) NOT NULL,

 Salary MONEY NOT NULL

)

As you can imagine, salary is sensitive data, and you would not want to allow anyone who has
not been authorized to view this data. If you cannot use stored procedures, you can use views to
limit access. First, you grant permissions to those who are allowed access (the Accounting role, for
example, for ad -hoc reporting) using the following command:

GRANT SELECT ON employee TO Accounting

Then you remove permissions from everyone else, as shown here:

DENY SELECT ON employee TO Public

 However, there may be circumstances when other roles require access to part of the employee table.
For example, the TechnicalSupport role may need to perform reporting. You can create a view to
support this and grant access to the view:

CREATE VIEW employeeList

AS

 SELECT firstname, surname

 FROM employee

GO

GRANT SELECT ON employeeList TO TechnicalSupport

GO

Now any account in the TechnicalSupport role can use the view to support their reporting.

For ORM scenarios, some ORMs will demand the capability to update tables. Views can support
UPDATE and DELETE operations, with the following restrictions:

 A view cannot modify more than one table. If a view is based on more than one table,
DELETE operations will fail. If you execute an INSERT or UPDATE statement against the view,
then all columns referenced within the statement must belong to the same table.

 A view containing a DISTINCT clause, a GROUP BY clause, or any type of calculated
columns, cannot be updated.

As you can see, for situations that would normally require table access, views can present a more
secure alternative.

➤

➤

More Security for SQL Server ❘ 199

200 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

 SQL Express User Instances

When Microsoft designed SQL Express, one of the goals was tighter integration with Visual Studio.
This was achieved by allowing a SQL database to be treated as any other fi le, and allowing the
automatic attachment of these fi les to SQL server. This feature is known as user instances .

 The following connection string shows how user instances can be confi gured:

 < add name="database"

 connectionString="Server=.\SQLExpress;

 AttachDbFilename=|DataDirectory|database.mdf;

 Database=demoDatabase;

 Integrated Security=True;

 User Instance=True;"

 providerName="System.Data.SqlClient" / >

While this is undoubtedly useful during the development process (and you ’ve used it in all the
examples in this chapter), it presents a security problem. When a database is loaded as a user
instance, it is (as you might imagine from the name) loaded for a particular user. That user account
then becomes the database administrator for that instance, bypassing any security restrictions set on
the tables, views, and stored procedures on that database. This makes it incredibily diffi cult to test
any security measures you have put in place.

If possible, avoid user instances. Instead, use either the SQL Express Management Studio, or SQL
Server Development to develop against, as this will enforce security. Microsoft has stated that user
instances for non -administrators will be dropped from a future version of SQL Server — another
good reason to avoid relying on it.

 Drawbacks of the VS Built - in Web Server

Another problem when developing is the Web server built into Visual Studio 2008 runs under the
context of the current logged -in user. This user account may have database administration rights
during development, and, so, like user instances, you bypass all security, making it diffi cult to
catch or test security controls. You should be aware of this, and plan to test your application hosted
within IIS and running under a limited user account, confi gured to the least privileges possible.

 Dynamic SQL Stored Procedures

One commonly held false assumption is that stored procedures will entirely protect you from SQL
injection. In fact, this is not true. Certain stored procedures may build their SQL dynamically (for
example, search procedures). For example, a search stored procedure might look something like the
following example:

CREATE PROCEDURE search_orders @custId nchar(5) = NULL,

 @shipTo nvarchar(40) = NULL AS

DECLARE @sql nvarchar(4000)

SELECT @sql = ' SELECT OrderID, OrderDate, CustomerID, ShipTo ' +

 ' FROM dbo.Orders WHERE 1 = 1 '

IF @custid IS NOT NULL

 SELECT @sql = @sql + ' AND custid LIKE ''' + @customerID + ''''

IF @shipTo IS NOT NULL

 SELECT @sql = @sql + ' AND ShipTo LIKE ''' + @shipTo + ''''

EXEC(@sql)

This procedure will perform a LIKE comparison on the customer parameter, the shipTo parameter,
or a combination of both. The problem arises with the use of EXEC command. Like the original
example at the beginning of this chapter, this stored procedure is vulnerable to injection because it
dynamically builds a query and executes it. If, for example '; DROP TABLE Orders -- were
passed into the stored procedure as the shipTo parameter, the resulting SQL executed would be as
follows:

SELECT * FROM dbo.Orders WHERE 1 = 1 AND ShipTo LIKE ''; DROP TABLE Orders --'

Depending on the permissions on the orders table, it may be deleted.

To implement a dynamic stored procedure correctly, the approach is exactly the same as using a
SQL statement in .NET: you use parameters. A safe version of this stored procedure would be the
following:

CREATE PROCEDURE search_orders @custId nchar(5) = NULL,

 @shipTo nvarchar(40) = NULL AS

DECLARE @sql nvarchar(4000)

SELECT @sql = ' SELECT OrderID, OrderDate, CustomerID, ShipName ' +

 ' FROM dbo.Orders WHERE 1 = 1 '

IF @custid IS NOT NULL

 SELECT @sql = @sql + ' AND CustomerID LIKE @custId '

IF @shipTo IS NOT NULL

 SELECT @sql = @sql + ' AND ShipName LIKE @shipTo '

EXEC sp_executesql @sql, N'@custid nchar(5), @shipTo nvarchar(40)',

 @custid, @shipTo

As you can see, this is, again, specifying parameter names and providing those parameters as part of
the execute command.

 Using SQL Encryption

SQL 2005 provides four encryption mechanisms:

 Encrypting by pass phrase

 Symmetric encryption

 Asymmetric encryption by key

 Encryption by certifi cates

NOTE Encryption itself is discussed in detail in Chapter 6. If you haven ’ t read
that chapter yet, now is a good time to do so. It will give you the understanding
you need as you read about SQL ’ s encryption capabilities.

➤

➤

➤

➤

More Security for SQL Server ❘ 201

202 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

SQL 2008 adds transparent encryption, which encrypts the entire database, by encrypting the
database fi les themselves. Because this discussion serves as a very simple introduction to SQL
encryption, transparent encryption and certifi cate encryption (which varies according to the version
of SQL you are using) cannot be easily covered. Microsoft has a number of white papers on SQL
security, including SQL cryptography in general, and transparent encryption. You can fi nd them
published on MSDN at http://msdn.microsoft.com/en - us/library/dd631807(SQL.10).aspx .

 Encrypting by Pass Phrase

The easiest encryption mechanism to use is by pass phrase. The following SQL code snippet
encrypts a sample string using a pass phrase, and then decrypts it again:

DECLARE @plainText AS VARCHAR(128)

DECLARE @passPhrase AS VARCHAR(64)

DECLARE @encryptedText AS VARBINARY(MAX)

DECLARE @decryptedText AS VARBINARY(MAX)

SET @plainText = 'MySecret'

SET @passPhrase = 'T0p!5ecr3t'

SET @encryptedText = EncryptByPassPhrase(@passPhrase, @plainText)

PRINT @encryptedText

SET @decryptedText = DecryptByPassphrase(@passPhrase, @encryptedText)

PRINT CONVERT(VARCHAR(100), @decryptedText)

If the wrong password is specifi ed, then the decryption function will return null .

 SQL Symmetric Encryption

Now let ’s look at symmetric encryption. You will remember from Chapter 6 that this uses the same
key for both encryption and decryption. To use symmetric encryption, you must fi rst create the key
you wish to use. The simplest type of symmetric key is protected by a password, and is created as
follows:

CREATE SYMMETRIC KEY MySymmetricKey

 WITH ALGORITHM = AES_128

 ENCRYPTION BY PASSWORD = N'ASuperStrongPassword';

 This creates a key named MySymmetricKey in the master database, using the AES algorithm with a
key length of 128. SQL Server supports DES, 3DES, AES, RC2 and the deprecated RC4. You can
check what keys exist by running the following command:

SELECT * FROM sys.symmetric_keys

Once you have a key, you must open it before use, using the password you specifi ed when you
created it. Then you can encrypt and decrypt as shown in the following example:

DECLARE @plainText AS VARCHAR(100)

DECLARE @encryptedText VARBINARY(MAX)

DECLARE @decryptedText VARBINARY(MAX)

SET @plainText = 'Hello AES'

OPEN SYMMETRIC KEY MySymmetricKey

 DECRYPTION BY PASSWORD = N'ASuperStrongPassword';

SET @encryptedText =

 EncryptByKey(Key_GUID('MySymmetricKey'), @plainText);

PRINT @encryptedText

SET @decryptedText = DecryptByKey(@encryptedText);

PRINT CONVERT(VARCHAR(100), @decryptedText)

CLOSE SYMMETRIC KEY MySymmetricKey;

 You can delete a symmetric key by using the drop command, as shown here:

DROP SYMMETRIC KEY MySymmetricKey

Of course, once you delete a key, you will no longer be able to decrypt any information that had
been encrypted with it. You can control access to the key by granting permission to it. The following
example grants read access to the key to the user ScottGal in the current database:

GRANT VIEW DEFINITION ON

 SYMMETRIC KEY::MySymmetricKey TO ScottGal

The symmetric encryption functions can also take an authenticator. Authenticators stop the
inference of data from encrypted fi elds, and lock an encrypted fi eld to the authenticator. For
example, consider the table of outgoing payments shown in Table 8 -2.

PAYMENTID COMPANY VALUE

1 ComputerSupplier Bd7E!7^ghds00

2 Sandwiches Inc. C977^E99&01D

3 Paper Is Us A76Ashdka&&%

TABLE 8-2: Outgoing Payments

More Security for SQL Server ❘ 203

It ’s likely that the value of payments to the ComputerSupplier company is higher than that of
Sandwiches Inc. If any attacker had control over Sandwiches Inc., he or she could increase the
payment sent to that company by taking the value for ComputerSupplier and using it to update the
value of the payment sent to Sandwiches Inc.

204 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

By specifying an authenticator value when encrypting, the encrypted value will be unique for
that authenticator. In Table 8 -2, the payment ID is a suitable authenticator value. If the wrong
authenticator value is supplied during decryption, then the decryption will fail. So, if an attacker
were to take the value of payment ID 1 and put it into the value for payment ID 2 , then the
decryption process would not work.

To use an authenticator, simply add it as the fi nal parameter to EncryptByKey and DecryptByKey ,
like so:

SET @encryptedText =

 EncryptByKey(Key_GUID('MySymmetricKey'), @plainText, @authenticator);

SET @decryptedText = DecryptByKey(@encryptedText, @authenticator);

 SQL Asymmetric Encryption

To create an asymmetric key, the process is much like that for symmetric keys:

CREATE ASYMMETRIC KEY MyAsymmetricKey

 WITH ALGORITHM = RSA_2048

 ENCRYPTION BY PASSWORD = N'AnotherStrongPassword';

Like .NET, only one asymmetric algorithm is available, RSA. You can specify the key length by
using RSA_512 , RSA_1024 or RSA_2048 when creating the key. You probably won ’t be surprised to
learn that you can check what keys exist by running the following command:

SELECT * FROM sys.asymmetric_keys

Encrypting with an asymmetric key does not need anything special because, of course, public keys
are generally public. Decrypting with an asymmetric key needs the key password.

DECLARE @plainText AS VARCHAR(100)

DECLARE @encryptedText VARBINARY(MAX)

DECLARE @decryptedText VARBINARY(MAX)

SET @plainText = 'Hello RSA'

SET @encryptedText =

 EncryptByAsymKey(AsymKey_ID('MyAsymmetricKey'), @plainText);

PRINT @encryptedText

SET @decryptedText = DecryptByAsymKey(AsymKey_ID('MyAsymmetricKey'),

 @encryptedText, N'AnotherStrongPassword');

PRINT CONVERT(VARCHAR(100), @decryptedText)

Like before, you can delete an asymmetric key by using the drop command, as shown here:

DROP ASYMMETRIC KEY MyAsymmetricKey

You can control access to the public key by granting permission to it. The following example grants
read access to the public key to the user ScottGal in the current database. Access to the private key
is still controlled by the use of the key password.

GRANT VIEW DEFINITION ON

 ASYMMETRIC KEY::MyAsymmetricKey TO ScottGal

 Calculating Hashes and HMACs in SQL

Of course, detecting changes to data encryption is not enough. You must produce a MAC. SQL
provides the HashBytes function that will provide a SHA, SHA1, MD2, MD4, or MD5 hash of
data. Used in combination with the encryption key, this can produce an HMAC value, allowing you
to check the integrity of the encrypted data. Raul Garcia has a good example of this on his blog at
http://blogs.msdn.com/raulga/archive/2006/03/11/549754.aspx .

 A CHECKLIST FOR SECURELY ACCESSING DATABASES

The following is a checklist of items to follow when writing data -access code:

 Never dynamically build SQL queries. — Dynamic queries are a vector for SQL injection.

 Always use SQL parameters . — SQL parameters will automatically escape dangerous
characters and help you void SQL injection.

 Control access to your data . — If you can, use stored procedures and SQL permissions to
limit access to the underlying database. If you cannot use stored procedures, use updatable
views to limit access to the underlying database. Stored procedures are not a panacea
because they can, in turn, contain dynamic SQL themselves.

➤

➤

➤

A Checklist for Securely Accessing Databases ❘ 205

9
 Using the File System

Most Web applications deal with fi les — accessing fi les on your server, generating fi les “on
the fl y, ” serving fi les from another server on your network, and allowing users to upload fi les.
Each of these functions can introduce vulnerabilities into your application.

In this chapter, you will learn about the following:

 How to access existing fi les safely

 How to confi gure your server for secure fi le access

 How to properly generate fi les

 How to access remote fi les

 How to handle user uploads

 ACCESSING EXISTING FILES SAFELY

There are many reasons why a Web site may serve actual fi les in addition to Web pages.
Sometimes, simply offering the user a direct download link is insuffi cient. Some Web sites may
want to restrict certain content, or track downloads of software, music, images, or documents.
To serve these fi les in a manner that enables access control or tracking they must be served via
code, rather than a direct download URI.

TRY IT OUT Serving Files Via Scripts

In this example, you will create a simple page that serves fi les through code, rather than a direct
link. You may want to do this to perform logging before a fi le is downloaded, or to limit access to
a fi le — something you cannot do if you use a simple link.

➤

➤

➤

➤

➤

208 ❘ CHAPTER 9 USING THE FILE SYSTEM

1. Create a new Web application or Web site and create the following default.aspx :

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Accessing Files</title>

</head>

<body>

 <h1>Accessing Files</h1>

 <form id="form1" runat="server">

 <asp:DropDownList ID="filename" runat="server">

 <asp:ListItem Text="example1.txt"

 Value="example1.txt" />

 <asp:ListItem Text="example2.txt"

 Value="example2.txt" />

 </asp:DropDownList>

 <asp:Button ID="submit" runat="server"

 Text="Get File"

 onclick="submit_OnClick" />

 </form>

</body>

</html>

2. In the code behind fi le, default.aspx.cs, change the contents to the following:

 using System;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void submit_OnClick(object sender, EventArgs e)

 {

 Response.Redirect("getfile.aspx?filename="+

 filename.SelectedValue);

 }

}

3. Finally, create two text fi les, example1.txt and example2.txt, and enter any text you like in them.

If you run this page, you will see that the Response.Redirect means the direct URI is viewable
in the browser address bar — which could then be bookmarked, or shared, bypassing any logging
or authorization code.

4. So how do you stop the address being revealed? You must read the fi le and serve it in code.
Create a new Web form called getfile.aspx and change the code behind fi le contents to
the following:

Accessing Existing Files Safely ❘ 209

 using System;

using System.IO;

public partial class getfile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Clear();

 string filename = Request.QueryString["filename"];

 FileInfo file = new FileInfo(Path.Combine(

 Request.PhysicalApplicationPath, filename));;

 Response.AddHeader("Content - Length",

 file.Length.ToString());

 Response.WriteFile(file.FullName);

 Response.End();

 }

}

5. Run this new page. Choose a fi le name from the drop -down list and click the Get File button. You
should see your example fi le served by the browser.

After performing the previous “Try It Out ” exercise, you may spot a potential problem — the
fi lename is passed via the query string.

NOTE The example code has introduced another example of the “ Insecure
Direct Object Reference ” vulnerability. If you haven ’ t read Chapter 4 , you may
wish to do so now. That chapter discusses this vulnerability and its mitigations in
greater detail.

 In this section, you will learn how to create a claims -aware Web site for passive SAML
authentication, and how to add Information Card support to an existing Web site.

Originally, with .NET 3.0, Information Card support was minimal. To add it to your site, you had
to use sample code that was rather fragile and made many assumptions. Microsoft changed this in
Geneva 2008 with the beta release of the “Geneva ” platform. This is composed of three parts:

 Windows Identity Foundation (WIF) — This is a code library that helps .NET Web sites
consume the tokens issued by a Security Token Service (STS), and also helps developers
write custom security token services.

 Active Directory Federation Services — The server component is a ready -made STS that
uses Active Directory to authenticate users, and to issue claims about their identities.

 Windows CardSpace — This is an identity selector, or the user interface that runs on
Windows. It allows the end user to select an Information Card to use, and retrieves a token
from the STS before delivering it to the requesting Web site.

If you want to learn more about Windows CardSpace and Information Cards, then see the
book, Understanding Windows CardSpace: An Introduction to the Concepts and Challenges of
Digital Identities by Vittorio Bertocci, Garrett Serack, and Caleb Baker (Boston: Addison -Wesley,
2008). For a higher -level view of the identity problem, Kim Cameron ’s blog at http://www
.identityblog.com/ is a must read, and Vittorio ’s blog at http://blogs.msdn.com/vbertocci/
contains lots of code samples, Web casts, and other deep technical resources.

Before beginning you will need to download WIF from the MSDN security site at http://msdn
.microsoft.com/security/aa570351.aspx. The WIF download comes as the runtime installer
and a separate SDK download that adds templates into Visual Studio — you should download and
install both WIF and the WIF SDK. You will also use StarterSTS, an WIF -based Open Source identity
provider by Dominick Baier, which you can download from http://startersts.codeplex.com/ .

After installing WIF and the WIF SDK you should download and unzip the StarterSTS package.
You will to create a Web application for StarterSTS and bind an HTTPS certifi cate to it. (Chapter
14 contains instructions on how to create and use an HTTPS certifi cate.) You should then follow
the confi guration instructions for Starter STS. Register a username and password within it
(see Chapter 7 for how to use the IIS 7 tools to add users and roles to a membership database), and
test that you can log in using it. You may also want to set up some roles, to see how they are used.
Next you will also need to confi gure StarterSTS to use the HTTPS certifi cate by providing the
certifi cate thumbnails in certifi cates.confi g. Finally, edit the starterSTS.config fi le and change
the requireSSL and allowKnownRealmsOnly settings to false . Loosening these settings will allow
you to run your test sites within Visual Studio without having to publish them to IIS.

 Creating a “ Claims - Aware ” Web Site

The WIF SDK comes with some tools to help you set up a Web site that will accept passive SAML
authentication. This involves you confi guring a partnership with an identity provider.

In the simplest scenario, which you will build here, when an unauthenticated user comes to your
claims -aware Web site, the user will be redirected to the partnered identity provider for that site.
The identity provider will authenticate the user and parcel up the information it knows about the

➤

➤

➤

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 363

364 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

user into a SAML token. The user ’s browser then forwards this token back to your Web site, where
it is parsed and turned into an IPrinciple / IIdentity pair, which is attached to the request. If
this sounds familiar, this principle attachment happens with, forms authentication and windows
authentication. The SAML parsing happens behind the scenes. You simply read the thread identity
and decide what you want to do next.

 TRY IT OUT Creating a Claims - Aware Web Site

In this exercise, you will create a Web site that accepts a SAML token, and partner it with an
installation of StarterSTS. You must have StarterSTS downloaded, confi gured, and running with at
least one username and password in its member database.

 1. Start Visual Studio and select File ➪ New ➪ Website. Select “Claims -aware ASP.NET WebSite ”
from the list of templates. This will create a new Web site containing two pages, default.aspx
and login.aspx .

 2. Look carefully at the result. At fi rst glance, nothing looks out of place until you examine the
web.config fi le. If you look at the assemblies list, you will see a reference to Microsoft
.IdentityModel. This is the WIF assembly. If you scroll down and look at the httpModules
section of web.config, you will see a new entry, ClaimsPrincipleHttpModule. This module
is responsible for taking the identity of the current request thread and turning it into an
IClaimsPrincipal. If you are using Web Application Projects rather than Web sites you can
simply copy these web.config entries into a web.config for a Web Application Project to
enable WIF.

 If you are using Windows Authentication, WIF would transform that identity into a
WindowsClaimsPrincipal. If you are using Forms Authentication, a ClaimsPrincipal class
would be created. This transformation takes the properties of the original identity and transforms
them into claims. A Windows identity would gain claims such as the account Security Identifi er,
while a forms identity would gain claims such as the authentication method.

This new common IClaimsPrincipal still works with the old style IsInRole() security
model, but provides the benefi ts of claims -based security. The major benefi t of a claims -based
approach is that your application is no longer locked to a specifi c authentication method, be it
Windows Authentication, forms authentication, or anything else. The ClaimsPrincipalModule
will take any authentication token it understands, even if the security token comes from
outside your company, or from a non -Windows system, and change it into a standard class that
you can use. Once you are ready to move from the backwards -compatible role that security
IClaimsPrincipal provides, then roles will be replaced with the more granular authorization
artifact, a claim.

 David Chappell has produced a white paper called “Digital Identity for .NET applications:
A Technology Overview, ” which delves into the approaches, advantages, and challenges a
claims -based identity system solves. You can download the white paper from http://msdn
.microsoft.com/en - gb/library/bb882216.aspx .

 3. When you create a new Claims -aware ASP.NET Web site it doesn ’t appear do anything. If you
run it, you will see a forms -based login page that you can use to authenticate, after which a list of

claims will be presented to you — the name of the user, the time the user authenticated, and how
the user authenticated. You will see that each claim type is a unique URI, and you can also see
how Microsoft has implemented specifi c claim types for the authentication instance and type.

 4. Now, you must add a partnership to an identity provider, in this case StarterSTS. Right -click
on the project in Solution Explorer and choose “Modify STS reference. ” This will start the
Federation Utility, an application that allows you to confi gure the trust relationship between
your Web application and the third -party authentication system (the STS). The “Application
confi guration location ” and the “Application URI ” will be fi lled in for you based on the project
properties, so just click the Next button. You will receive a warning that the application is not
hosted on HTTPS. Click Yes to continue.

 5. You will now be prompted for the details of the STS. Select the “Use an existing STS ”
option. You must now enter the location of the STS federation metadata location. This URI
is a document published by an STS that lists (among other things) the location of the login page
and the claims it offers. If you log in to the StarterSTS site, you will see a link to view the
WS-Federation metadata. Click the link. Then copy the URI from the browser location bar and
paste into the location fi eld in the Federation Utility. Now click Next.

 6. You will now be asked about token encryption. For live systems, tokens will generally be
encrypted against an X509 certifi cate, so only the relying party can decrypt the token. But since
you are just setting up a site, it ’s unlikely you have a suitable certifi cate. Leave the No Encryption
option selected and click Next.

 7. You will now be presented with a list of claims that the STS can deliver. This screen is
informational, so click Next to be presented with the fi nal summary screen, and then click Finish.

 8. Now run your application. This time, you will not see the login screen delivered by the
application. Instead, your browser will be redirected to the login screen for StarterSTS. If you
log in using your StarterSTS account, you will see that now StarterSTS has performed the
authentication and sent the identity information to your claims -aware Web site, which has then
been parsed and turned into a claims identity, including any roles defi ned within StarterSTS that
the user is a member of.

 The claims identity can be treated as you would a forms identity, or a Windows identity. You can
use the normal ASP.NET authorization confi gurations detailed in Chapter 7 to grant (or limit)
access to your application based upon the username or roles sent by StarterSTS. You now have a
federated identity solution!

 Accepting Information Cards

Windows has another method of transporting federated identity that does not use browser
redirection or federated partnerships — Windows CardSpace. CardSpace is an identity selector, a
piece of software that sits between the user and the relying party, allowing the user to select which
identity he or she wants to use, and requesting and forwarding the identity information to the
relying party.

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 365

366 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

Windows CardSpace supports two types of Information Card:

 Self -issued cards — This is a card that you create, and it can be fi lled with basic
information.

 Managed cards —This is an Information Card issued by an identity provider that can
support any type of information an identity provider wishes to supply.

 You can create a self -issued card with the Windows CardSpace identity selectors by going to Control
Panel ➪ User Accounts and Family Safety ➪ Windows CardSpace. Then choose Add a Card to
create a personal card.

 TRY IT OUT Accepting an Information Card

In this exercise, you will write code to accept authentication information from an Information Card.
Before you begin, ensure that you have installed Windows Identity Foundation.

Accepting information cards is a manual process with WIF. There are no templates or Web controls, so
you must do everything by hand.

 1. Create a new Web Application project called InformationCard. Right -click on the References
folder and choose Add Reference. Then add the Microsoft.IdentityModel , System
.IdentityModel and System.Runtime.Serialization assemblies from the .NET tab.

 2. Edit the default.aspx fi le to contain the following code:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="InformationCard.Default" ValidateRequest="false" % >

 < %@ OutputCache Location="None" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head >

 < title > Information Card Demonstration < /title >

 < /head >

 < body >

 < object type='application/x-informationCard' id='informationCard' >

 < param name='tokenType'

 value='urn:oasis:names:tc:SAML:1.0:assertion' / >

 < param name='requiredClaims'

 value='http://schemas.xmlsoap.org/ws/2005/05/

 identity/claims/privatepersonalidentifier' / >

 < param name='optionalClaims'

 value='http://schemas.xmlsoap.org/ws/2005/05/

 identity/claims/givenname' / >

 < /object >

 < form id="informationCardLogin" runat="server" >

 < input type='hidden' name='tokenXml' value='' / >

 < asp:Button runat='server' ID='signinButton'

 Text='Click Here' Visible='true'

 OnClientClick=

 'javascript:tokenXml.value=informationCard.value;' / >

 < asp:Label ID="signedInMessage" runat='server' Visible='false' / >

➤

➤

 < asp:Label ID="loginError" runat='server' Text="" ForeColor='Red' / >

 & nbsp;

 < asp:Panel ID="claimsList" runat="server" Height="264px" Visible=

 "False" Width="677px" >

 The following claims were found in the submitted card: < br / >

 < br / >

 < asp:Table ID="claimsDump" runat="server" >

 < asp:TableHeaderRow >

 < asp:TableHeaderCell > Claim URI < /asp:TableHeaderCell >

 < asp:TableHeaderCell > Value < /asp:TableHeaderCell >

 < asp:TableHeaderCell > Issuer < /asp:TableHeaderCell >

 < /asp:TableHeaderRow >

 < /asp:Table >

 < /asp:Panel >

 < /form >

 < /body >

 You can see that this code embeds an object within the HTML page of type application/
x - informationCard. This creates a DOM object that triggers the Information Card selector.
Within the object are the requirements for the type of token it will deliver, the claims that are
required, and claims that are optional. The object is triggered by the JavaScript bound to the
client Click event on the sign -in button. When the value property on the object is accessed, the
browser will start the selector, as shown in Figure 15 -2. The user is able to choose an Information
Card to use, provided it meets the claims and token type requirements.

FIGURE 15-2: The Windows CardSpace Identity Selector

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 367

368 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

 3. Open the code behind and change the code to include all the namespaces you will eventually
need. Then change the Page_Load event to show you the contents of the token, as shown here:

using System;

using System.IdentityModel.Tokens;

using System.IO;

using System.Web.UI.WebControls;

using System.Xml;

using Microsoft.IdentityModel.Claims;

using Microsoft.IdentityModel.Protocols.WSIdentity;

using Microsoft.IdentityModel.Tokens;

using Microsoft.IdentityModel.Tokens.Saml11;

using Microsoft.IdentityModel.Web;

namespace InformationCard

{

 public partial class Default : System.Web.UI.Page

 {

 void Page_Load(object sender, EventArgs e)

 {

 if (Page.IsPostBack)

 {

 Response.Write(

 Server.HtmlEncode(Request.Form["tokenXml"]));

 }

 }

 }

}

 4. If you now run the page, select the “Click here ” button, and choose an Information Card, you
will see a bunch of XML on your screen. This is the SAML token sent by the selector. (If you ’re
running the sample pages over HTTPS, you will see an encrypted token.) Obviously, it is possible
to manually parse this token, but why do so when WIF will take care of this for you and present
the token to you in a standard identity format?

 5. The fi rst thing you need to write is an IssuerNameRegistry . An IssuerNameRegistry
examines the incoming token and checks if it is from a source that you recognize and will accept.
For this example, you will accept any token at all. Create a new class in your project called
SimpleIssuerNameRegistry.cs and enter the following code.

using System.IdentityModel.Tokens;

using Microsoft.IdentityModel.Tokens;

namespace InformationCard

{

 public class SimpleIssuerNameRegistry : IssuerNameRegistry

 {

 public override string GetIssuerName(SecurityToken securityToken)

 {

 X509SecurityToken x509Token =

 securityToken as X509SecurityToken;

 if (x509Token != null)

 return x509Token.Certificate.SubjectName.Name;

 RsaSecurityToken rsaSecurityToken =

 securityToken as RsaSecurityToken;

 if (rsaSecurityToken != null)

 return rsaSecurityToken.Rsa.ToXmlString(false);

 throw new SecurityTokenException("Unknown token type");

 }

 }

}

 6. Next you must add a member fi eld and a Page_Init event to your code behind, as shown here:

SecurityTokenHandlerCollection handlers;

void Page_Init(object sender, EventArgs e)

{

 if (false == Page.IsPostBack & &

 false == Request.Url.AbsolutePath.EndsWith

 ("/Default.aspx"))

{

 UriBuilder builder = new UriBuilder

 {

 Scheme = this.Request.Url.Scheme,

 Host = this.Request.Url.Host,

 Path = this.ResolveUrl("~/Default.aspx"),

 Port = this.Request.Url.Port,

 Query = this.Request.Url.Query

 };

 Response.Redirect(builder.Uri.ToString());

}

 SecurityTokenHandlerConfiguration handlerConfig =

 new SecurityTokenHandlerConfiguration

 {

 IssuerNameRegistry = new SimpleIssuerNameRegistry(),

 ServiceTokenResolver =

 FederatedAuthentication.ServiceConfiguration.

ServiceTokenResolver

 };

 handlerConfig.AudienceRestriction.AllowedAudienceUris.

Add(Request.Url);

 this.handlers = new SecurityTokenHandlerCollection(handlerConfig);

 SamlSecurityTokenRequirement samlReqs =

 new SamlSecurityTokenRequirement

 {

 NameClaimType = WSIdentityConstants.ClaimTypes.PPID

 };

 this.handlers.Add(new EncryptedSecurityTokenHandler());

 this.handlers.Add(new Saml11SecurityTokenHandler(samlReqs));

 this.loginError.Text = "";

 this.loginError.Visible = false;

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 369

370 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

 this.signinButton.Visible = true;

 this.signedInMessage.Visible = false;

}

 SAML tokens are limited by their audience — in this case, the Web page requesting it. However,
if you ’re requesting it from default.aspx, this may have multiple URLs — http://localhost/ ,
http://localhost/default.aspx, or http://localhost/Default.aspx . So the fi rst thing
you must do is check the URL for the current request. If it ’s not the exact one you wish (in the
example code, /Default.aspx), then the browser is redirected to it.

 Next, the code confi gures the token handlers. The token handlers are a pipeline WIF puts each
token through, which takes the token and checks that it was issued by a partner the application
trusts via the IssuerNameRegistry. The handler setup also checks the allowed audience
restrictions, if the token meets the requirements for an application, and a parser for the token
format. In this example, encrypted tokens and SAML 1.1 tokens are handled.

 7. Now that the parsers are confi gured, you must actually parse the token sent. Change the
Page_Load event to be the following:

void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack)

 {

 string tokenXml = Request.Form["tokenXml"];

 if (false == String.IsNullOrEmpty(tokenXml))

 {

 SecurityToken token = ReadXmlToken(tokenXml);

 if (null == token)

 {

 this.loginError.Text = "Unable to process xml token.";

 }

 else

 {

 IClaimsPrincipal principal =

 AuthenticateSecurityToken(Request.RawUrl, token);

 if (principal == null)

 {

 this.loginError.Text = "Unable to authenticate user.";

 }

 else

 {

 ShowClaims(principal);

 }

 }

 }

 }

}

 8. Now you also must add a couple of helper functions to aid in parsing the token, and convert it to
a usable form:

SecurityToken ReadXmlToken(string tokenXml)

{

 using (StringReader strReader = new StringReader(tokenXml))

 {

 using (XmlDictionaryReader reader =

 XmlDictionaryReader.CreateDictionaryReader

 (XmlReader.Create(strReader)))

 {

 reader.MoveToContent();

 return this.handlers.ReadToken(reader);

 }

 }

}

IClaimsPrincipal AuthenticateSecurityToken(string endpoint,

 SecurityToken token)

{

 ClaimsIdentityCollection claims = this.handlers.ValidateToken(token);

 IClaimsPrincipal principal =

 ClaimsPrincipal.CreateFromIdentities(claims);

 return

 FederatedAuthentication.ServiceConfiguration.

ClaimsAuthenticationManager.Authenticate(

 endpoint, principal);

}

 9. Finally, you can output the claims in a format you can read with the last method:

void ShowClaims(IClaimsPrincipal principal)

{

 this.claimsList.Visible = true;

 foreach (ClaimsIdentity identity in principal.Identities)

 {

 foreach (Claim claim in identity.Claims)

 {

 TableCell claimUri = new TableCell

 {

 Text = claim.ClaimType

 };

 TableCell claimValue = new TableCell

 {

 Text = claim.Value

 };

 TableCell issuer = new TableCell

 {

 Text = claim.Issuer

 };

 TableRow claimRow = new TableRow();

 claimRow.Cells.Add(claimUri);

 claimRow.Cells.Add(claimValue);

 claimRow.Cells.Add(issuer);

 this.claimsDump.Rows.Add(claimRow);

 }

 }

}

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 371

372 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

The ReadXml function uses the handlers you registered earlier in the page lifecycle to parse the
token. The AuthenticateSecurityToken will validate the token (using the IssuerNameRegistry
you registered) and convert it into a class that implements IClaimsPrincipal, which, in turn,
implements IPrincipal — the standard way that the .NET framework treats identity.

If you don ’t have an existing authentication scheme and wish to just use tokens that WIF can
understand, you can use the WIF SDK to take the claims information and use it as a session
authentication mechanism. By adding two functions, you can enable this, as shown in Listing 15 -1.

 LISTING 15 - 1: Helper functions for WIF session authentication

static TimeSpan GetSessionLifetime()

{

 TimeSpan lifetime =

 SessionSecurityTokenHandler.DefaultTokenLifetime;

 if (FederatedAuthentication.ServiceConfiguration.

 SecurityTokenHandlers != null)

 {

 SessionSecurityTokenHandler ssth =

 FederatedAuthentication.ServiceConfiguration.

 SecurityTokenHandlers[

 typeof(SessionSecurityToken)] as

 SessionSecurityTokenHandler;

 if (ssth != null)

 {

 lifetime = ssth.TokenLifetime;

 }

 }

 return lifetime;

}

static void CreateLoginSession(IClaimsPrincipal principal,

 SecurityToken token)

{

 WSFederationAuthenticationModule activeModule =

 new WSFederationAuthenticationModule();

 activeModule.SetPrincipalAndWriteSessionToken(

 new SessionSecurityToken(

 principal,

 GetSessionLifetime(),

 token),

 true);

}

 GetSessionLifetime gets the default session lifetime, or the lifetime confi gured in your Web
site ’s confi guration fi le. CreateLoginSession sets the identity principal for the current user, and
writes a session token into a protected cookie that is sent to the browser. From that point on, the
User property in your page will be populated with an identity derived from the original SAML
token sent when the user authenticated. The identity can also be used for role -based operations

in the same way you would check roles that came from Forms or Windows authentication, either
programmatically or using principal demands.

The claim used to populate the name of the user is confi gured when you create the
SamlSecurityTokenRequirement object, as shown in Listing 15 -2.

 LISTING 15 - 2: Confi guring the claims used in the creation of the user principal

 SamlSecurityTokenRequirement samlReqs =

 new SamlSecurityTokenRequirement

 {

 NameClaimType = WSIdentityConstants.ClaimTypes.PPID

 RoleClaimType = "http://schemas.wrox.com/aspnet/2009/05/roles/"

 };

 Working with a Claims Identity

 System.IdentityModel.Claims.ClaimTypes contains properties that return the standard
claim types defi ned in the Information Card specifi cations. The Information Card foundation
has these and other standardized claims listed on their claims catalog, found at http://
informationcard.net/resources/claim - catalog . If you want to retrieve a specifi c claim from
an IClaimsPrincipal, you can extract the value of a particular claim using Linq, as shown in
Listing 15 -3.

 LISTING 15 - 3: Extracting a specifi c claim from an IClaimsPrincipal

IClaimsIdentity cid = (IClaimsIdentity)principal.Identity;

Claim firstName = (from claim in cid.Claims

 where claim.ClaimType ==

 System.IdentityModel.Claims.ClaimTypes.GivenName

 select claim).FirstOrDefault();

Once you have your claims, you can process them however you want. Normally, if you have an
existing authentication system, you would use a unique claim from the token, such as a PPID from
an Information Card or email address in combination with the issuer.

You may ask why a unique claim is not enough. It is perfectly possible to write a security
token service that issues managed cards and sends a PPID that matches one you already have.
However, each SAML token is signed, and you can use this signing key to identify where the
token has come from. This is the token issuer and is set by the IssuerNameRegistry class. The
SimpleIssuerNameRegistry used in the Information Card example takes the name from the SSL
certifi cate that an STS uses for managed cards, or the generated RSA key used to sign self -issued
cards. By combining the unique claim and the issuer, you will have a unique combination of identity
and issuer you can use to validate a user.

If you are accepting SAML from a federated identity provider or Information Cards from a managed
STS, and roles are enabled in your application, WIF will populate the principal roles from any claims
that are of the role type http://schemas.microsoft.com/ws/2008/06/identity/claims/role .

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 373

374 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

If you are using multiple partners (some of which are not using Geneva server), or delivering role
types using the Microsoft claim name, you can map their role claims to roles, or indeed transform any
claims by using a ClaimsAuthenticationMapper .

This may strike you as overly complicated for just accepting an identity from a UI -driven selector.
(And, if you want a simple -to -use ASP.NET server control, Dominick Baier has written one, and
made it available at http://infocardselector.codeplex.com/.) But this barely scratches the
surface of Microsoft ’s roadmap for claims -based identity.

Remember, Microsoft ’s Claims solution consists of three parts: WIF (which you have just used to
accept SAML and Information Cards), Windows CardSpace (the identity selector used to select
information cards and communicate with an Identity Provider), and the ADFS (an identity provider
that uses Active Directory to authenticate users and will deliver claims from various claim stores
such as AD, SQL Server, and others). If ADFS does not meet your needs, then you can also use the
WIF to write your own security token service.

Using Microsoft ’s various options, you can issue your own identities and accept those from trusted
parties, or from any compatible identity provider with ease. Furthermore, because WIF leverages the
WS -Federation standard, a WIF solution is interoperable with other federated identity providers. So,
for example, a company that is using Active Directory as its identity store can use Geneva to provide
identity information to a company using IBM Tivoli Federated Identity Manager. Furthermore,
by using claims -based authentication and authorization, you can also use the access control
services Azure provides to authenticate with your corporate Active Directory or other identity
provider, and future proof your application, should you ever wish to move it to Microsoft ’s cloud
offering. A step -by -step guide to WIF and Azure is available at http://code.msdn.microsoft
.com/wifwazpassive .

 USING OPENID WITH YOUR WEB SITE

OpenID is probably the most widespread third -party authentication method on the Internet today,
both in terms of providers and Web sites that accept it. Major providers include AOL, Google,
Microsoft, Verisign, and Yahoo!, not to mention the myriad of smaller providers who sprung up
before the standard was adopted by the larger
players. An OpenID takes the form of a
unique URL, for example http://wrox
.openid.example, which a user will enter in
an OpenID login form hosted by your Web
site, and is identifi ed by the OpenID logo.
Figure 15 -3 shows an example.

When a user enters his or her OpenID, the form is submitted to your site, the RP. The RP then
accesses the Web site specifi ed by the OpenID and looks for the OpenID provider information by
parsing the page and extracting the openid.server link tag.

If the OpenID server is not one your application has conversed with before, your application must
then send an associate request, which requests a shared secret between your application and the
OpenID provider, safely exchanged via Diffi e -Hellman key exchange. Once you have a shared secret

FIGURE 15-3: An example of an OpenID login form

with the OpenID provider, you use the discovered server address and redirect the browser to it,
providing the desired claims, the shared secret as an HMAC -SHA1 key, a return address, and a few
other parameters.

 At this point, the user ’s browser is now at his or her identity provider. The user logs into the
identity provider, which then prompts the user to confi rm the sending of that information to your
application. If the confi rmation is successful, the user will be redirected back to your return address
to allow with the claims requested, and provide some information to stop reply attacks. Luckily, an
Open Source project exists to take care of all this for you: DotNetOpenAuth , available from http://
dotnetopenauth.net:8000/ .

 The DotNetOpenAuth project provides ASP.NET controls to automate OpenID support, as well as
samples for the ASP.NET MVC library and samples illustrating how to expose your membership
information and become an OpenID identity provider yourself.

 TRY IT OUT Accepting an OpenID

In this exercise, you will write code to request and display claims from an OpenID provider. Before you
begin, ensure that you have downloaded and uncompressed the DotNetOpenAuth library.

 1. Create a new Web project. Then right -click on the References folder and choose Add
Reference. Then add the DotNetOpenAuth library from the location you unzipped the download
package into.

 2. Change the contents of the default.aspx fi le to be the following:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs" Inherits="OpenID._Default" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Open ID Demo < /title >

 < /head >

 < body >

 < form id="openIdDemo" runat="server" >

 < asp:Panel ID="loginBox" runat="server" >

 < div >

 Login: < asp:TextBox ID="openIdBox" runat="server" / >

 < asp:Button ID="login" runat="server" Text="login"

 onclick="login_OnClick" / >

 < /div >

 < asp:CustomValidator runat="server" ID="openidValidator"

 ErrorMessage="Invalid OpenID Identifier"

 ControlToValidate="openIdBox"

 OnServerValidate="openidValidator_ServerValidate" / >

 < asp:Literal ID="openIdError" runat="server" / >

 < /asp:Panel >

 < asp:Panel ID="results" runat="server" Visible="false" >

 < table >

 < tr > < td > Claim < /td > < td > Value < /td > < /tr >

 < tr > < td > Claimed Identifier < /td >

Using OpenID with Your Web Site ❘ 375

376 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

 < td > < asp:Literal ID="claimedIdentifier"

 runat="server" / >

 < /td > < /tr >

 < tr > < td > Friendly Identifier < /td >

 < td > < asp:Literal ID="friendlyIdentifier"

 runat="server" / >

 < /td > < /tr >

 < tr > < td > Country < /td >

 < td > < asp:Literal ID="country" runat="server" / >

 < /td > < /tr >

 < tr > < td > Email < /td >

 < td > < asp:Literal ID="email" runat="server" / >

 < /td > < /tr >

 < tr > < td > Nickname < /td >

 < td > < asp:Literal ID="nickname" runat="server" / >

 < /td > < /tr >

 < tr > < td > Postal Code < /td >

 < td > < asp:Literal ID="postalcode" runat="server" / >

 < /td > < /tr >

 < /table >

 < /asp:Panel >

 < /form >

 < /body >

 < /html >

 The sample code shown here simply provides a normal text box and button, along with space to
show errors, a table to show results, and a custom server side validator that will validate that the
login name is in the correct format for an OpenID.

 3. Add the following using statements to the code behind fi le, default.aspx.cs :

using DotNetOpenAuth.Messaging;

using DotNetOpenAuth.OpenId;

using DotNetOpenAuth.OpenId.Extensions.SimpleRegistration;

using DotNetOpenAuth.OpenId.RelyingParty;

 4. Now you must validate the text entered in the login fi eld. The ASPX code is wired up a custom
validator to do this, and the DotNetOpenAuth library provides validation code for identifi ers
so that you just need to wire up the validator in to your code behind by adding the following
event code:

protected void openidValidator_ServerValidate(object source,

 ServerValidateEventArgs args)

{

 args.IsValid = Identifier.IsValid(args.Value);

}

 5. Once you ’ve confi rmed you have a potentially valid OpenID (you cannot tell if there is
an OpenID provider at the URI until you send a request), you now send your user off to his
or her OpenID provider, along with the request for claims, confi gured by adding a
ClaimsRequest extension. In order to send the request, add the following event handler for the
OnClick event of the login button:

protected void login_OnClick(object sender, EventArgs e)

{

 if (!this.Page.IsValid)

 {

 return;

 }

 try

 {

 using (OpenIdRelyingParty openid =

 new OpenIdRelyingParty())

 {

 IAuthenticationRequest request =

 openid.CreateRequest(this.openIdBox.Text);

 // Add the extra claims you want or require.

 request.AddExtension(new ClaimsRequest

 {

 Country = DemandLevel.Request,

 Email = DemandLevel.Require,

 Nickname = DemandLevel.Request,

 PostalCode = DemandLevel.Require

 });

 // Send the user off to their provider

 // to authenticate.

 request.RedirectToProvider();

 }

 }

 catch (ProtocolException ex)

 {

 this.openidValidator.Text = ex.Message;

 this.openidValidator.IsValid = false;

 }

 catch (WebException ex)

 {

 this.openidValidator.Text = ex.Message;

 this.openidValidator.IsValid = false;

 }

}

 6. Next, because OpenID works via redirects to the provider (which, after authentication, redirects
back to your Web site), your code fi nally receives the requested information back in the query
string. The DotNetOpenAuth library parses these for you. All you must do is add the code into the
page load event, like this:

protected void Page_Load(object sender, EventArgs e)

{

 OpenIdRelyingParty openid = new OpenIdRelyingParty();

 var response = openid.GetResponse();

 if (response != null)

 {

 switch (response.Status)

 {

 case AuthenticationStatus.Authenticated:

 this.loginBox.Visible = false;

 this.results.Visible = true;

Using OpenID with Your Web Site ❘ 377

378 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

 this.claimedIdentifier.Text =

 response.ClaimedIdentifier;

 this.friendlyIdentifier.Text =

 response.FriendlyIdentifierForDisplay;

 ClaimsResponse claimsResponse =

 response.GetExtension < ClaimsResponse > ();

 if (claimsResponse != null)

 {

 this.country.Text =

 claimsResponse.Country;

 this.email.Text =

 claimsResponse.Email;

 this.nickname.Text =

 claimsResponse.Nickname;

 this.postalcode.Text =

 claimsResponse.PostalCode;

 }

 break;

 case AuthenticationStatus.Canceled:

 this.openIdError.Text = "Login Cancelled";

 break;

 case AuthenticationStatus.Failed:

 this.openIdError.Text = "Login Failed" +

 response.Exception.Message;

 break;

 }

 }

}

 7. Finally, once everything is hooked up, you can upload your site to an Internet -facing server, send
an OpenID request to an OpenID provider, and get a response.

You may have tried to run the OpenID login from the Visual Studio development Web server,
or from within IIS on your local machine. However, this won ’t work. OpenID servers will not
communicate with internal machines without a routable IP address. Your server must be on the
Internet for OpenID to work.

For development purposes, the DotNetOpenAuth developers provide a tools package that includes an
OpenID offl ine provider — a test OpenID server that runs on your local machine and will respond
to requests automatically, or allows you to intercept them and edit the response before it is sent.
In order to use this, you must confi gure your application and whitelist the development server by
adding the sections shown in Listing 15 -4 to your web.config fi le.

 LISTING 15 - 4: Confi guring DotNetOpenAuth to support the offl ine provider

 < configSections >

 < section name="dotNetOpenAuth" type=

 "DotNetOpenAuth.Configuration.DotNetOpenAuthSection"

 requirePermission="false" allowLocation="true"/ >

 < /configSections >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < dotNetOpenAuth >

 < openid >

 < relyingParty >

 < security requireSsl="false" / >

 < /relyingParty >

 < /openid >

 < messaging >

 < untrustedWebRequest >

 < whitelistHosts >

 < add name="localhost" / >

 < /whitelistHosts >

 < /untrustedWebRequest >

 < /messaging >

 < /dotNetOpenAuth >

 The DotNetOpenAuth library also provides some server -side controls that will take care of the whole
procedure for you, turning the returned identifi er into a forms authentication token (although,
unless you intercept the login event, you will lose any claims you requested unless you store them
in session state). The sample code contained in the library download shows you the best way to use
the controls.

 USING WINDOWS LIVE ID WITH YOUR WEB SITE

Originally, Microsoft had three authentication methods for ASP.NET:

 Windows authentication

 Forms authentication

 Microsoft Passport

Since the launch of ASP.NET 1.0, Passport has grown into Windows Live ID, and the initial
Passport authentication module was deprecated in favor of the new Live ID services. With the
Windows Live Services SDKs, you can now leverage Live ID ’s authentication and the millions of
registered users simply by registering your application and a shared secret with Microsoft, and
adding a few lines of code to your Web site.

 The Windows Live ID SDKs come in three fl avors:

 Web Authentication — This provides a simple authentication procedure, and gives your
application a unique ID for each user.

 Delegated Authentication — This allows you to request information about the user ’s Live
ID services (such as contacts), and allows the user to control your application ’s access to his
or her details.

 Client Authentication — This allows .NET -based desktop software to authenticate via
Live ID.

➤

➤

➤

➤

➤

➤

Using Windows Live ID with Your Web Site ❘ 379

380 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

The SDKs are all available for download, with sample applications and documentation, as well as
with support for C#, Visual Basic, Ruby, Perl and various other languages. You may download them
from MSDN at http://msdn.microsoft.com/en - us/library/bb404787.aspx .

 TRY IT OUT Using Live ID Authentication in Your Web Application

In this example, you will add the Windows Live ID authentication to your Web site, and retrieve the
unique user identifi er for your application. Before you begin, download the Live ID Web Authentication
SDK, and register for a Live ID, if you don ’t already have one. The Web Authentication SDK consists
of two parts: a class contained in WindowsLiveLogin.cs and an ASP.NET page designed to be hosted
inside an HTML iframe element.

 1. Create a new Web application. Copy the WindowsLiveLogin.cs fi le from the SDK into your
project. Next, copy the webauth - handler.aspx and webauth - handler.aspx.cs fi les into
your project.

 2. Next, because Live ID redirects back to your Web site after login has completed, you must
have a fi xed URL for your project. Right -click on your project in Solution Explorer and choose
Properties. Switch to the Web tab. In the Servers section, check the Specifi c Port radio button.
Now, right -click on webauth - handler.aspx and choose “View in Browser. ” Note the URL in the
browser (you can ignore the error thrown when the page is opened).

 3. Next, you must register your application with the Live ID servers. Fire up your browser and go to
http://go.microsoft.com/fwlink/?LinkID=144070 and sign in using your Live ID. (If this is
the fi rst time you ’ve used the developer portal, you must step through some initial screens before
you can register an application.) Click the New Project link, and then click Live Services Existing
APIs. Enter a Project Label (for example, Live ID Test Project). Blank out the Domain fi eld and
enter the URL for webauth - handler.aspx that you discovered earlier as the Return URL. Then
click Create. You will be given two values by the developer portal — an application identifi er and
a secret key.

 4. Now open the web.config for your application. Add a security algorithm value and the settings
provider by the portal into the appSettings section as shown here. (Ensure that you copy the
values correctly, because if you have any errors, the token sent by Live ID will not be validated.)

 < appSettings >

 < add key="wll_appid" value="0000000000000000"/ >

 < add key="wll_secret" value="ApplicationKeyExample"/ >

 < add key="wll_securityalgorithm" value="wsignin1.0"/ >

 < /appSettings >

 Once you have the confi guration settings, all that remains is to hook up the authentication
handler and your page. All communication between the authentication handler and the rest of
your application is done via a cookie created when Live ID posts back to your return URL.

 5. Delete the default.aspx.cs fi le and default.aspx.designer.cs fi le from your project. Replace
the contents of the default.aspx fi le with the following:

 < %@ Page Language="C#" AutoEventWireup="true" % >

 < %@ Import Namespace="WindowsLive"% >

 < script runat="server" >

 const string LoginCookieName = "webauthtoken";

 readonly static WindowsLiveLogin WindowsLiveLogin =

 new WindowsLiveLogin(true);

 protected void Page_Load(object sender, EventArgs e)

 {

 HttpRequest req = HttpContext.Current.Request;

 HttpCookie loginCookie = req.Cookies[LoginCookieName];

 if (loginCookie != null)

 {

 string token = loginCookie.Value;

 if (!string.IsNullOrEmpty(token))

 {

 WindowsLiveLogin.User user =

 WindowsLiveLogin.ProcessToken(token);

 if (user != null)

 {

 this.liveId.Text = user.Id;

 }

 else

 {

 this.liveId.Text = "Unknown";

 }

 }

 else

 {

 this.liveId.Text = "Empty auth token.";

 }

 }

 else

 {

 this.liveId.Text = "No auth cookie - not logged in";

 }

 }

 < /script >

 < !DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Windows Live ID Authentication < /title >

 < meta http-equiv="Pragma" content="no-cache" / >

 < meta http-equiv="Expires" content="-1" / >

 < /head >

 < body >

 < form id="liveAuth" runat="server" >

 < iframe

 id="WebAuthControl"

 name="WebAuthControl"

Using Windows Live ID with Your Web Site ❘ 381

382 ❘ CHAPTER 15 THIRD � PARTY AUTHENTICATION

 src="http://login.live.com/controls/WebAuth.htm?appid= < %=

 WindowsLiveLogin.AppId% > & style=font-size%3A+10pt%

 3B+font-family%3A+verdana%3B+background%3A+white%3B"

 width="80px"

 height="20px"

 marginwidth="0"

 marginheight="0"

 align="middle"

 frameborder="0"

 scrolling="no" >

 < /iframe >

 < p > The current user has a live ID identifier of

 < asp:Literal ID="liveId" runat="server" / > < /p >

 < /form >

 < /body >

 < /html >

 6. Finally, in the page load event, look for the authentication cookie created by the authentication
handler, and parse it using the WindowsLiveLogin class. If all goes well, you will see a GUID
once you have authenticated with Live ID. This GUID is an identifi er for the user that is unique to
your application ID. Another developer using a separate application ID will see a different GUID,
which guarantees the privacy of the user. You can then use the Live ID user identifi er as a primary
key in your database for whatever purposes you like.

 A STRATEGY FOR INTEGRATING THIRD - PARTY

AUTHENTICATION WITH FORMS AUTHENTICATION

You may have noticed that each of the third -party authentication methods give you their own type
of identifi er or user object, none of which link to the ASP.NET forms authentication system. If you
have an existing forms authentication system and want to use it with a third -party system, you have
two approaches available:

 Drive new user registration using the unique identifi ers each system provides

 Add a custom database table where their unique identifi ers are stored and checked, creating
a suitable forms authentication token once they are validated.

To drive registration you can augment your registration page to accept a third -party login, read
any of the claims supplied, and create a membership user for them manually using the third -party
unique identifi er, indicated by UserId in the following code snippet:

MembershipUser user=

 Membership.CreateUser(UserId, UserId,

 "emailFromRegistrationPageOrClaim");

You can then respond to an authentication event in your login page and manually create the token
using FormsAuthentication.RedirectFromLoginPage(UserId, true), where the Boolean value
indicates if a persistence login cookie is to be created.

➤

➤

If you already have existing users who may wish to attach a third -party identifi er such as an
OpenID to their accounts, then you must do a little extra work by creating a database table in your
membership database. The ASP.NET profi le system is not suitable because you cannot easily search
through profi le fi elds for all members looking for a value such as their OpenID.

How you do this is dependent on the exact confi guration of your membership database. For
example, the default ASP.NET membership provider uses a GUID to identify a user. You could
create a table containing the membership ID of a user and the third -party identifi er, along with
appropriate stored procedures to attach, remove, and look up the identifi er. During login, if a user
authenticates with a third -party system, you can then retrieve the membership ID for that identifi er,
and use RedirectFromLoginPage to create the correct forms authentication token.

If you encounter problems with Live ID, the example processing code does log error messages to the
Debug Window. You can either step into the processing code to try to debug your problems, or view
these messages using DebugView from the SysInternals site on Microsoft.com , http://technet
.microsoft.com/en - us/sysinternals/ .

 SUMMARY

Third -party authentication systems are currently useful as a secondary login method; it ’s a brave or
specialized Web site which will rely on them alone. They are, however, becoming more common,
with OpenID used for blog comments and authentication and for sites such as Stack Overfl ow.
Claims -based authentication via Information Cards and WS -Federation are starting to spread into
corporate environments and is Microsoft ’s identity strategy for the cloud.

Any application which uses them will also need testing in a staging environment where
your application is running on an Internet -facing server with as many third parties as you can
muster — if you ’re using OpenID check it with multiple OpenID providers, if you are using Geneva
test it with all your federation parties. Also consider that your production environment (and perhaps
your staging server) will require an SSL certifi cate to reassure your users or to comply with the
requirements of a third party you wish to use.

Summary ❘ 383

 Secure Development with
the ASP.NET MVC Framework

In late 2007, Microsoft introduced a preview of the ASP.NET Model -View -Controller (MVC)
Framework, which represented a different approach to developing Web applications with ASP
.NET. The v1.0 release came in 2009. The MVC framework departs from the event -driven
model inherent to Web Forms development, and exposes more of the “rawness ” behind HTTP
and Web development. As stated in Professional ASP.NET MVC 1.0 by Rob Conery, Scott
Hanselman, Phil Haack, and Scott Guthrie (Indianapolis: Wrox, 2009), in doing so, the MVC
framework follows these three guiding tenets:

 Be more extensible, maintainable, and fl exible

 Be testable

 Get out of the user ’s way when necessary

By following these tenets, nothing is hidden or abstracted from the developer. There is no
ViewState, no Web controls, and no drag -and drop -designers. MVC allows the developer to
concentrate on development, and not on how Web forms implement things in the pipeline or
in the controls.

The purpose of this chapter does not enter into a discussion about which approach is best, but
rather highlights areas where an ASP.NET MVC developer should pay particular attention to
security issues. Not all of these issues are new to ASP.NET MVC. Some you will have already
discovered in earlier chapters. But the approaches or solutions to the vulnerabilities and issues
are answered in terms and code specifi c to the MVC framework.

In this chapter, you will build upon your understanding from previous chapters, and will learn
about the following:

 How to encode output safely using the MVC Helper Functions

 How to protect an MVC application against Cross Site Request Forgery (CSRF)

➤

➤

➤

➤

➤

16

403

applications accessing fi les in, 215–216
checklist for, 224
creating fi les in, 218–220
downloading fi les in, 216
introduction to, 207
naming of fi les in, 216
path traversals in, 210–212
remote fi le access in, 218
role checks for, 216–217
scripts in, 207–210
static fi les in, 213–216
upload control in, 220–224

fi ltering requests
based on fi le extensions, 341–342
based on HTTP verbs, 342
based on request headers, 343–344
based on request segments, 343
based on request size, 342
based on URL sequences, 343
double-encoded requests, 341
in HTML, 50–51
introduction to, 340–341
non-ASCII characters, requests with, 341
status codes returned to denied requests, 344

Firefox Tamper Data
accepting requests in, 388
introduction to, 29
vs. traversal attacks, 222

fi rewalls, 9
folder access, 180–183
forgeries. see Cross Site Request Forgery (CSRF) attacks
form fi elds

checklist for, 83–84
as input type, 65–66
introduction to, 65
overview of, 68
request forgeries and. see Cross Site Request Forgery

(CSRF) attacks
forms authentication

confi guring, 154–158
defi ned, 154
membership settings in, 164–166
passwords in, 167
role confi guration with, 174–175
SQL as membership store in, 158–160
third-party authentication and, 382–383
user creation, generally, 160–163
user creation, programmatically, 166–167
user storage in, 163–164

forms, controlling information leaks in. see
information control

FQDNs (fully qualifi ed domain names), 352–353
FrontPage, 112
Full Trust environments, 324–326
fully qualifi ed domain names (FQDNs), 352–353

G

GAC (Global Assembly Cache), 324–326
Garcia, Raul, 205
GET

events and, 30–31
Fiddler for, 22–27
fi ltering requests to, 342
HTTP Handler and, 34
introduction to, 17–18
URLS and, 22

Global Assembly Cache (GAC), 324–326
Global Unique Identifi er (GUID), 67
global.asax, 93
Google

hacking database of, 112
introduction to, 17–18
XSS vulnerability of, 42

Gras, Adriaan, 42
groups, in SQL Server, 197–198
GUID (Global Unique Identifi er), 67
Guinness World Records, 55
Guthrie, Scott, 385

H

Haack, Phil, 385
hacking. see also attacks

anatomy of attacks in, 2–5
database of types of, 112
illegality of, 1–2
origins of, 5
report on, 6

Hanselman, Scott, 385
Hash-based Message Authentication Code (HMAC), 205
hashing

algorithms for, 118–120
introduction to, 117–118
overview of, 118–119
password protection with, 120–123
in Silverlight, 310–311
in SQL Server, 205

header-splitting attacks, 84
headers of requests, 19, 343–344
hidden form fi elds, 68
Hinkson, Grant, 290
HMAC (Hash-based Message Authentication Code), 205
Hoffman, Billy, 290
hooking, 74–76
Hotmail, 42
Howard, Michael, 39
HTML (Hypertext Markup Language)

Bridge in, 302–306
control properties requiring, 47
Document Object Model in, 303–306

fi ltering requests – HTML (Hypertext Markup Language)

404

HTML (Hypertext Markup Language) (continued)
source for demonstration pages, 31–33
tags in XSS attacks, 51–52

HTTP (Hypertext Transfer Protocol)
Ajax communication model vs., 291
defi ned, 3
Handler, 34–36
HTML Bridge and, 302–306
HTTPOnly cookies, 52–53
input types for, 65–66
in Internet Information Server, 342
introduction to, 15
modules in. see HTTP Modules
requests, responding to, 18–19
resources, requesting, 16–18
sniffi ng requests and responses, 19–22
XMLHttpRequest objects in, 291–292

HTTP Modules
adding hooks into page events in, 75–76
creating, 73–74
vs. CSRF attacks, generally, 72–73
dropping CSRF cookies, 78–80
hooking into ASP.NET pipeline, 74–75
in pipeline model, 34
registering, 76–78
summary of, 80

HTTPOnly cookies, 52–53
HTTPS (Hypertext Transfer Protocol Secure), 354
Hypertext Markup Language (HTML). see HTML

(Hypertext Markup Language)
Hypertext Transfer Protocol (HTTP). see HTTP

(Hypertext Transfer Protocol)
Hypertext Transfer Protocol Secure (HTTPS), 354

I

IClaimPrincipal, 373
IDataErrorInfo, 390–392
identity discovery, 152–154
identity providers (IPs), 360
identity selectors, 360–363, 365–373
IEchoService, 256
IETF (Internet Engineering Task Force), 16
if statements, 10
IIS (Internet Information Server). see Internet

Information Server (IIS) security
IIS6, 34. see also Internet Information Server (IIS)

security
IIS7. see also Internet Information Server (IIS) security

installing and confi guring, 330–331
introduction to, 34
logging options in, 345–351

imperative demands, 319–320
impersonation, 171
Index Server, 114
indirect object references, 211

Information Cards, 361–363, 365–373
information control

browser caching in, 94–95
checklist for, 116
error handling in, 95–98
introduction to, 87
logging in, 95–97
logging errors in, 99–100
logging events in, 100–102
logging frameworks for, 108–112
monitoring applications in, 99–100
passwords in config fi les, protecting, 114–116
Performance Monitor for, 104–107
robots in, 113–114
search engines in, 112–113
special exceptions in, 98–99
tracing facility for, 102–104
VIEWSTATE for. see VIEWSTATE
Windows Event Log for, 99–100
Windows Management Interface for, 107–108

initialization vectors (IVs), 124–127
injection fl aws, defi ned, 11. see also SQL (Structured

Query Language) injection
input

defi ned, 39–41
in Model-View-Controller Framework, 386
types of, 65–66
of users. see user input security
validation of. see validation

insecure cryptographic storage, 118
insecure direct object references

defi ned, 11
in fi le systems, 209
in input, 66

inspectors
in ActionFilter, 394
IP address, 285–286
message, 283–286
parameter, 280–282

Installer Package, 106
integrated pipelines, 336
integrity, defi ned, 118
Internet Engineering Task Force (IETF), 16
Internet-facing WCF services. see also Windows

Communication Foundation (WCF)
accessing current user names in, 269
adding authentication to, 267–269
confi guring for transport security, 265–267

Internet Information Server (IIS) security
adding to, 263–264
application pools in, 335–337
authorization rules in, 180–183
certifi cates in. see certifi cates in Internet Information

Server (IIS)
checklist for, 357
custom trust levels in, 339–340
denied requests in, 344

HTML (Hypertext Markup Language) – Internet Information Server (IIS) security

405

double-encoded requests in, 341
fi le extensions in, 341–342
fi ltering requests in, 340–344
global features in, 335
headers in, 343–344
HTTP verbs in, 342
HTTPS in, 354
IIS6, 34
IIS7. see IIS7
introduction to, 329–330
locking trust levels in, 338–339
log parser in, 344–351
mining log fi les in, 344–351
requests with non-ASCII characters in, 341
Role Services in, 331–334
segments in, 343
size in, 342
SSL certifi cates in, 352–353
status codes in, 344
test certifi cation authority in, 354–356
trust levels in, confi guring, 337–340
URL sequences in, 343
user creation in, 161–163
Windows authentication in, 168–171

Internet Protocol (IP) addresses, 16, 285–286
Internet services security. see also Windows

Communication Foundation (WCF)
authentication in, generally, 267–269
authorization of operations in, 273–274
client programs in, 267
custom user name validation classes in, 271–272
intranet services authentication in, 272
introduction to, 263–265
membership provider for, 270–271
service hosts in, 266–267
transport security in, 265–267
user name authentication in, 269

intranet service authentication, 272
IP (Internet Protocol) addresses, 16, 285–286
IPs (identity providers), 360
isolated storage, 306–309
IValidator interface, 55–56
IVs (initialization vectors), 124–127

J

JavaScript Object Notation (JSON), 299
JSON (JavaScript Object Notation), 299

K

Kay, Michael, 225
keys

in asymmetric encryption, 134–135, 141–142
decryption of XML with, 244–245

in encryption algorithms, 126–127
machinekey element, 90–91
master, 129–132
private. see private keys
public, 133–135
RSA, 242–244
session, 129
signing XML documents with, 246–248
in symmetric encryption, 126–127, 238–242
user, 93–94
for XML documents, 238–242

Klein, Amit, 236
Klein, Scott, 255

L

leakage of information, 11. see also
information control

Learning WCF, First Edition, 255
least privilege accounts, 198
LeBlanc, David, 39
Liberty Alliance, 361
Little, J. Ambrose, 290
Live ID

introduction to, 361
for third-party authentication, 379–382
URLS and, 380

local fi le systems, 306–309
locking trust levels, 338–339
Log Parser, 344–351
log4net, 109–112
logging

errors in, 99–100
events using email, 100–102
fi les for, 344–351
frameworks, 108–112
introduction to, 95–97
in Windows Communication Foundation,

277–280
login screens, 4–5
logins, 157–159
Love, Chris, 36

M

MAC (Message Authentication Code), 129–132
machine stores, 137
machinekey element, 90–91
MAKECERT, 142–143
malicious fi le execution, 11
managed cards, 366
Managed Pipeline, 335–336
Management Console, 137
Massachusetts Institute of Technology (MIT), 5
master keys, 129–132

Internet Protocol (IP) addresses – master keys

406

Matt’s Mail Script, 84
Medical Training Application Service (MTAS), 66
membership

databases of, 159–160
provider, 270–271
settings for, 164–166
stores of, 158–160

Message Authentication Code (MAC), 129–132
Message Digest algorithm 5 (MD5), 118–120
messages

credential types of, 263
inspectors of, 283–286
security of, 260–261
signing, 274–277

method override, 302
Microsoft Anti-XSS Library, 47–50
Microsoft ASP.NET AJAX framework. see AJAX

applications security
Microsoft Claims, 374
Microsoft Index Server, 114
Microsoft Installer Package (MSI), 106
Microsoft Log Parser, 344–345
Microsoft Management Console (MMC), 137
Microsoft Passport, 361, 379
Microsoft Press, 7
Microsoft Service Trace Viewer, 280
Microsoft Silverlight. see Silverlight applications

security
Microsoft UK Events Page, 1
MIME (Multipurpose Internet Mail Extensions),

211–212
minimum CAS permissions, 319–321
mining log fi les, 344–351
misinformation, 41
MIT (Massachusetts Institute of Technology), 5
mixed mode security, 261
MMC (Microsoft Management Console), 137
Model-View-Controller (MVC) Framework

action authorization in, 392–393
authentication with, 392–395
authorization with, 392–395
checklist for, 398
controller authorization in, 392–393
vs. Cross Site Request Forgery attacks, 387
vs. Cross-Site-Scripting attacks, 386–387
current user discovery in, 393–394
error handling with, 395–397
error messages in, 389–392
fi lters in, 394–395
input, generally, 386
introduction to, 385–386
model binding in, 387–388
output, generally, 386
public controller method in, 393
validation in, 389–392

modules. see HTTP modules

monitoring applications, 99–100, 104–107
MSI (Microsoft Installer Package), 106
MTAS (Medical Training Application Service), 66
Multipurpose Internet Mail Extensions (MIME),

211–212
MVC (Model-View-Controller) Framework. see Model-

View-Controller (MVC) Framework

N

names
of fi les, 216, 341–342
strong, 324–325
of users. see user names

National Institute of Standards and Technology
(NIST), 126

.Net 4 changes, 327–328
NIST (National Institute of Standards and

Technology), 126
non-repudiation, 118, 133
normalization, 234

O

OASIS (Organization for Advancement of Structured
Information Standards), 125

object references
direct, 209–211
indirect, 211
insecure direct, 11, 66
securing, 183–184

Object Relationship Mapping (ORM) tools, 198–199
Onion, Fritz, 88
Open Web Application Security Project (OWASP),

10–11, 118
OpenID

accepting, 375–379
introduction to, 374–375
Security Assertion Markup Language in, 361–362

operating system security, 316–317
optional headers, 19
OrcsWeb, 91
Organization for Advancement of Structured

Information Standards (OASIS), 125
ORM (Object Relationship Mapping) tools, 198–199
OWASP (Open Web Application Security Project),

10–11, 118

P

parameter inspectors, 280–282, 394
parameterized queries, 191–192
parsers, log, 344–351

Matt’s Mail Script – parsers, log

407

parsers, XML, 227–234
pass phrase encryption, 202
passive SAML authentication, 362–364
Passport, 361, 379
passwords

adding, 151–152
authentication of. see authentication
authorization of. see authorization
in config fi les, 114–116
for database access, 194–196
in forms authentication, 167
hashing and, 120–123
salting, 121–123
secure random number generation for, 121–123
in SQL Server security, 194–196

path traversals, 67, 210–212
Performance Monitor, 104–107
permissions

checks on, 322–323
classes in, 317–318
declarative requests for, 321
failure of, 322
imperative requests for, 320
for SQL Server security, 196–198

PGP (Pretty Good Privacy), 134
phreakers, 5
pipeline

hooking into, 74–75
integrating, 336
Managed, 335–336
model of ASP.NET, 34

plain text, 117, 133
POST

events and, 30–31
Fiddler for, 22–27
fi ltering requests to, 342
HTTP Handler and, 34
introduction to, 22

Postback, 32–33
Practical Cryptography, 118
Pretty Good Privacy (PGP), 134
Princeton University, 69
privacy, 259
private keys. see also keys

in asymmetric encryption, 134–135, 141–142
of certifi cates, 141–142
defi ned, 133
in XML, 244–245

privilege accounts, 198
PRNG (pseudo-random number generators), 121–122
Professional ASP.NET 3.5 Security, Membership and

Role Management with C# and VB, 163
Professional ASP.NET MVC 1.0, 385
Professional Silverlight 2 for ASP.NET Developers, 290
Professional WCF Programming: .NET Development

with the Windows Communication Foundation, 255
Professional XML, 225

program.cs, 258–259
provider/consumer model, 107–108
proxy servers, 19–20
pseudo-random number generators (PRNG), 121–122
public controller methods, 393
public keys, 133

Q

query strings
checklist for, 83–84, 116
as input type, 65–66
introduction to, 65
overview of, 66–67
request forgeries and. see Cross Site Request Forgery

(CSRF) attacks
querying XML, 234–237. see also XML (Extensible

Markup Language) security

R

Rader, Devin, 290
rainbow tables, 121–123
RangeValidator, 58–59
RC2 algorithm, 126
recycling application pools, 337
registering HTTP modules, 76–78
RegularExpressionValidator, 59
relying parties (RPs), 360, 374
remote systems, 218
replay attacks, 92
Request Filter, 340–341
requests

for comments, 16
denied, 344
fi ltering. see fi ltering requests
forging. see Cross Site Request Forgery (CSRF) attacks
GET. see GET
headers of, 83
HTTP, 18–22, 291–292
with non-ASCII characters, 341
POST. see POST
for resources, 16–18
segments of requests on, 343
for SSL certifi cates, 352–353
in Tamper Data, 388

RequiredFieldValidator, 58
resetting passwords, 167
RFCs (requests for comments), 16
RIA (Rich Internet Applications) security. see Rich

Internet Applications (RIA) security
Rich Internet Applications (RIA) security

AJAX applications in. see AJAX applications security
architecture in, 290
authentication and authorization in, 313–314

parsers, XML – Rich Internet Applications (RIA) security

408

Rich Internet Applications (RIA) security (continued)
checklist for, 314
introduction to, 289–290
Silverlight applications in. see Silverlight applications

security
Rijmen, Vincent, 126
Rijndael algorithm, 126–128
Rios, Bill, 42
risks vs. rewards, 5–6
Rivest, Ronald, 126
robots, 112–114
role-based authorization

defi ned, 174
form-based authentication confi gurations in, 174–175
managing role members programmatically, 179
managing roles programmatically, 177–178
managing roles with confi guration tools, 176–177
Windows authentication with, 179

Role Services, 331–334
roles

authorization based on. see role-based authorization
checks on, 216–217
defi ned, 197
form-based authentication for, 174–175
managing programmatically, 177–178
managing with confi guration tools, 176–177
members in, 179
programmatic checking of, 183–184
in SQL Server permissions, 197–198
in Windows Communication Foundation, 273–274

root authority, 142
RPs (relying parties), 360, 374
RSA cryptography

algorithm for, 246
class in, 135–136
keys in, 242–244

S

Safe Critical code, 301–302, 327–328
salting passwords, 121–123
SAM (Security Accounts Manager), 66
Same Origin Policy, 292–293
SAML (Security Assertion Markup Language). see

Security Assertion Markup Language (SAML)
sandboxes, 316
schedulers, 220
Schnier, Bruce, 118
ScriptManager, 296–301
scripts

in Cross-Site-Scripting attacks. see Cross-Site-
Scripting (XSS)

Matt’s Mail, 84
serving fi les via, 207–210
in Silverlight, 305–306

SDL (Security Development Lifecycle), 7
search engines, 112–113
secure development with MVC Framework. see

Model-View-Controller (MVC) Framework
Secure Hash Algorithm (SHA), 118–120
secure random number generation, 121–123
Secure Sockets Layer (SSL)

certifi cates in, 351, 352–353
IIS and, 264
in information control, 101
transport security in, 259

Security Accounts Manager (SAM), 66
Security Assertion Markup Language (SAML)

accepting Information Cards, 365–373
authentication in, 361–364
in claims-aware Web sites, 363–365
claims identities in, 373
introduction to, 359
passive authentication in, 362–364
third-party authentication in, 362

security auditing, 278
Security Development Lifecycle (SDL), 7
Security Identifi ers (SIDs), 169
security modes in Windows Communication

Foundation (WCF)
introduction to, 259
message, 260–261
mixed, 261
selecting, 261–262
transport, 259–260

security of user input. see user input security
Security Run-time Engine (SRE), 48–50
segments of requests, 343
self-issued cards, 366
self-signed certifi cates, 351–354
Serack, Garrett, 363
servers, defi ned, 15
service behavior attributes, 281–282, 285
Service Trace Viewer, 280
session cookies, 72
session keys, 129, 134–135
session management, defi ned, 11
SHA (Secure Hash Algorithm), 118–120
sharing data with WCF. see Windows Communication

Foundation (WCF)
Sharkey, Kent, 225
shopping cart software, 68
SIDs (Security Identifi ers), 169
signatures in asymmetric encryption,

143–146
signing messages, 274–277
signing XML documents

with asymmetric keys, 246–248
introduction to, 237
overview of, 251–252
with X509 certifi cates, 248–251

Rich Internet Applications (RIA) security – signing XML documents

409

Silverlight applications security
authentication and authorization in, 313–314
checklist for, 314
classes and members in, 304–306
CoreCLR security model in, 301–302
cryptography in, 309–311
HTML Bridge in, 302–306
HTML DOM in, 303–304
introduction to, 301
local fi le system access in, 306–309
Web access in, 312–313

site identities, 307
size of requests, 342
sniffi ng HTTP requests and responses, 19–22
sniffi ng UpdatePanel, 293–296
SOAP faults, 286–287
special exceptions, 98–99
SQL (Structured Query Language)

Express user instances, 200
forms authentication in, 158–160
injection attacks in. see SQL (Structured Query

Language) injection
permission for database access in, 196–198
Server. see SQL (Structured Query Language) Server
Slammer worm, 9

SQL (Structured Query Language) injection
defi ned, 185
example of, 4–5
repairing vulnerabilities to, 190–194
vulnerability to, 186–190

SQL (Structured Query Language) Server
adding users to databases, 197
asymmetric encryption in, 204–205
dynamic SQL stored procedures in, 200–201
encryption in, 201–205
groups in, 197–198
hashes in, 205
HMACs in, 205
injection fl aws in. see SQL (Structured Query

Language) injection
least privilege accounts in, 198
Management Studio, 195–197
managing, 197
parameterized queries in, 191–192
pass phrase encryption in, 202
permissions in, 196–198
roles in, 197–198
stored procedures in, 192–194
symmetric encryption in, 202–204
user instances in, 200
views for, 198–199
Visual Studio built-in Web server in, 200
without passwords, 194–196

SRE (Security Run-time Engine), 48–50
SSL (Secure Sockets Layer). see Secure Sockets Layer (SSL)
stateless HTTP, 3

static fi les security, 213–216
status codes, 344
store managers, 137–142
stored procedures, 192–194, 200–201
strong naming, 324–325
Structured Query Language (SQL). see SQL (Structured

Query Language)
Sullivan, Bryan, 290
symmetric encryption

algorithms for, 126
of data, 128–129
decrypting data in, 128–129
detecting data changes and, 129–130
example of, 130–132
initialization vectors in, 126–127
keys for, 126–127
Message Authentication Code in, 130–132
overview of, 125
session keys in, 129
in SQL Server security, 202–204
for XML documents, 238–242

T

Tamper Data. see Firefox Tamper Data
TCP (Transmission Control Protocol), 16
test certifi cates, 142, 354–356
Thangarathinam, Thiru, 225
theft, 41
third-party authentication

claims-aware Web sites in, 363–365
claims identities in, 373–374
federated identity in, 359–362
forms authentication and, 382–383
information cards in, 362, 365–373
introduction to, 359
OpenID for, 374–379
Security Assertion Markup Language in, 362
summary of, 383
in Windows Identity Framework, 362–363
Windows Live ID for, 379–382

throwing errors, 286–287
timestamps, 36
TLS (Transport Layer Security), 351
Top Ten Project, 10–11
tracing facility, 102–104
Transmission Control Protocol (TCP), 16
transparent code, 301–302
transport client credential types, 262
Transport Layer Security (TLS), 351
transport security

client programs in, 267
introduction to, 259–260
overview of, 265–266
sample service hosts in, 266–267

Silverlight applications security – transport security

410

traversal attacks, 222
trust boundaries, 40, 290
trust levels

declarative demands in, 321
failing in, 322–323
Full Trust, 324–326
global assembly cache in, 324–326
imperative demands in, 319–320
introduction to, 318–319
minimum CAS permissions in, 319–321
.Net 4 changes for, 327–328
permission checks in, 322–323
testing applications under new, 321

trusted connections, 195–196

U

UK Events Page, 1
Understanding Windows CardSpace, 363
Uniform Resource Locators (URLs). see URLs (Uniform

Resource Locators)
untrusted certifi cates, 351–352
update panels, 293–296, 299–301
upload control, 221–224
URLs (Uniform Resource Locators)

in AJAX Same Origin Policy, 292
in anti-leeching checks, 217–218
in ASP.NET pipeline, 34
attacks based on, 70–71
for authorization in IIS7, 181
certifi cates with, 264–266
in denied requests, 344
encoding, 386
in forms authentication, 153–158
in HTML forms, 22–27
in IIS Role Services, 331–333
in IIS7 Request Filter, 340–341
Live ID and, 380
mapping, 392
OpenID and, 374
query strings in. see query strings
restricting access to, 11
SAML and, 361–362, 370
sequences, fi ltering requests based on, 343
in Silverlight applications, 307
size of, 342

User Agents, 15
user input security

Anti-XSS Library for, 47–50
checklist for, 63–64
CompareValidator, 59–60
constraining input for, 50–52
cookies in, 52–53
CustomValidator, 60–61
defi ning input, 39–41
echoing in, 41–45

introduction to, 39–41
mitigating against XSS in, 45–47
RangeValidator, 58–59
RegularExpressionValidator, 59
RequiredFieldValidator, 58
Security Run-time Engine in, 48–50
validating form input for, 53–55
validation controls, generally, 55–57
validation controls, standard ASP.NET, 57–63
validation groups for, 61–63

user names
adding, generally, 151–152
<allow>, 173
authentication of. see authentication
authorization of. see authorization
<deny>, 173
discovery of, 152–154
forms authentication of. see forms authentication
role-based authorization of. see role-based

authorization
validation class in, 271–272
Windows authentication for. see Windows

authentication
users

adding to databases, 197
creating, generally, 160–163
creating programmatically, 166–167
current, 269, 393–394
input of. see user input security
instances of, 200
keys of, 93–94
names for. see user names
programmatic checking of, 183–184
property of, 152–153
redirecting, 41
stores of, 137
storing, 163–164
tracking, 41
uploads of, 220–224

V

validating XML. see also XML (Extensible Markup
Language) security

example of, 227–234
introduction to, 225–227
parsers in, 227–234
valid XML in, 226–227
well-formed XML in, 226

validation
adding functions for, 54–55
class in user names, 271–272
controls. see validation controls, standard
of events, 81–83
of form input, 53–55
groups, 61–63

traversal attacks – validation

411

of input, defi ned, 8
in Model-View-Controller Framework, 389–392
of parameters using inspectors, 280–282
trust boundaries and, 40
of XML. see validating XML

validation controls, standard
CompareValidator, 59–60
CustomValidator, 60–61
introduction to, 55–58
RangeValidator, 58–59
RegularExpressionValidator, 59
RequiredFieldValidator, 58
for user input security generally, 57–58

Vernet, Alessandro, 225
VIEWSTATE. see also information control

encrypting, 91–92
introduction to, 87–89
one-click attacks in, 92–94
removing from client pages, 94
user keys in base classes, 93–94
user keys in global.asax, 93
validating, 89–91

Visual Studio (VS)
claims-aware Web sites in, 364
common regular expressions in, 59
creating users in, 160–163
HTML forms in, 22–23
HTTP modules in, 35, 73, 77
MAKECERT in, 142
membership settings in, 164–166
performance counters in, 105
running as administrator, 263
saving fi les in, 114
Security Run-time Engine in, 49
Solution Explorer in, 324–325
SQL Express and, 186, 200
in SQL Server security, 200
strong naming in, 324
validating XML in, 229–231
WCF services in, 256–259
Windows authentication in, 166–167, 171, 177
XML/XSLT validation in, 231

VS (Visual Studio). see Visual Studio (VS)

W

W3C (World Wide Web Consortium). see World Wide
Web Consortium (W3C)

watchfulness, 8
WCF (Windows Communication Foundation). see

Windows Communication Foundation (WCF)
Web Authentication, 379
Web basics, introduction to

access in, 8–9
ASP.NET in, 30
attacks in, 2–5

code in, 10
cryptography in, 9
defaults in, 9
defense, multiple approaches to, 8
events in, 30–33
fi rewalls in, 9
functionality of Web in, 37
HTML forms in, 22–29
HTTP in, 15
introduction to, 1–2
OWASP in, 10–11, 118
pipeline model and, 34
requests, responding to HTTP, 18–19
resources, requesting HTTP, 16–18
risks vs. rewards in, 5–6
security in, 6–8
Silverlight applications for, 312–313
sniffi ng HTTP requests and responses, 19–22
validation in, 8
watchfulness, 8
workings of, generally, 15
XSS-protected pages on, 46
XSS-vulnerable pages on, 42–45

Web Service Defi nition Language (WSDL), 300
Web Services Enhancement (WSE), 255
web.config fi les

allowing single user access with, 172–173
authorization in MVC, 392–393
authorization rules in, 180–183
denying user access with, 172
in forms authentication, 155–156
IIS7 and, 331

well-formed XML, 226–229
white-listing approach, 48, 114
WIF (Windows Identity Framework). see Windows

Identity Framework (WIF)
Windows authentication

IIS confi guration for, 168–170
impersonation with, 171
overview of, 167
with role-based authorization, 179

Windows CardSpace, 362–363, 365–373
Windows Communication Foundation (WCF)

auditing in, 277–280
authentication in, 272
authorization in, 273–274
checklist for, 287–288
client credentials in, 262–263
client test code in, 258–259
Echoservice in, 256–259
IEchoService in, 256
Internet services in. see Internet services security
introduction to, 255
logging in, 277–280
message inspectors in, 283–286
message security with, 260–261
mixed mode security with, 261

validation controls, standard – Windows Communication Foundation (WCF)

412

Windows Communication Foundation (WCF)
(continued)

parameter inspectors in, 280–282
privacy with, 259
program.cs in, 258–259
security modes in, 259–262
services of, 256–259
signing messages with, 274–277
throwing errors in, 286–287
transport security with, 259–260

Windows Data Protection API (DPAPI), 147
Windows Event Log, 99–100
Windows Identity Framework (WIF)

claims-aware Web sites in, 363–365
claims identities in, 373–374
information cards in, 362, 365–373
introduction to, 362–363
SAML and, 362

Windows Live ID. see Live ID
Windows Management Instrumentation, 99
Windows Management Interface (WMI), 107–108
Windows Server 2008, 330
WMI (Windows Management Interface), 107–108
World Wide Web Consortium (W3C)

introduction to, 16
on XML parsers, 227
on XMLHttpRequest, 291

wrapper functions, 386
Wright, Matt, 84
Writing Secure Code, Second Edition, 39
Wrox.com

asynchronous emails on, 101
certifi cates on, 353, 355
client program confi guration on, 267
client test code in, 258
Code Access Security on, 321–327
CreateUserWizard controls on, 162
currency converter on, 28
decryption on, 241, 244–245
disclaimer of, 2
Echoservices on, 256
encryption on, 135, 238–240, 242–245
events on, 30
fi le upload control on, 221
form-based authentication on, 174
HTML source for demonstration page on, 31
on HTTP Modules, 36, 73
HTTP on, 17–18
IDataErrorInfo on, 390
if statements on, 10
IP address inspectors on, 285
log4net.confi g fi les on, 109–111
logins on, 157–158
on machine keys, 90
membership databases on, 159, 166
message inspectors on, 283–284

parameter inspectors on, 281
parameterizing user information on, 394
robots.txt fi les on, 113–114
roles programmatically on, 177
sample service hosts in, 266
schedulers on, 220
security auditing on, 278
signatures on, 143
signing documents on, 248–251
Silverlight applications in, 303–305, 312
third-party authentication on, 372–373, 378
unauthenticated users on, 217
URLS of, 292
user properties on, 152
ViewState user keys on, 93
web.config on, 155, 172
Windows identity on, 169
WMI classes on, 107–108
XHR on, 291–292

WSDL (Web Service Defi nition Language), 300
WSE (Web Services Enhancement), 255

X

X509 certifi cates, 245–246
XHR (XMLHttpRequest) objects, 291–292
XML (Extensible Markup Language) security

asymmetric encryption keys in, 242–245
checklist for, 252
documents in, generally, 237–238
encrypting XML documents in, 238
introduction to, 225
parsers in, 227–234
querying XML in, 234–237
signing XML documents in, 246–252
symmetric encryption keys in, 238–242
valid XML in, 226–227
validating XML, example of, 227–234
validating XML, generally, 225–226
well-formed XML in, 226
X509 certifi cates for, 245–246

XML Transformations (XMLTs), 234
XMLHttpRequest (XHR) objects, 291–292
XMLTs (XML Transformations), 234
Xpath expressions, 234–236
XPath injection, 236–237
XQuery Injection, 235–236
XSS (Cross-Site-Scripting). see Cross-Site-Scripting

(XSS)

Z

Zeller, William, 69
Zimmerman, Philip, 134

Windows Communication Foundation (WCF) – Zimmerman, Philip

