Join the discussion @ p2p.wrox.com e Wrox Programmer to Programmer™
e
i

Beginning
ASP.NET Security

Barry Dorrans

BEGINNING
ASP.NET SECURITY

INTRODUCTION. ..ottt ittt ittt ttet ittt tenneeenneeennasennesennnns XXi
CHAPTER1 Why Web Security Matters ... i
» PART I THE ASP.NET SECURITY BASICS
CHAPTER 2 Howthe Web Works 15
CHAPTER 3 Safely AcceptingUserInput., 39
CHAPTER 4 Using Query Strings, Form Fields, Events,

and Browser Information........ 65
CHAPTER5 Controlling Information....... i i 87
CHAPTER 6 Keeping Secrets Secret — Hashing and Encrypton................. 17
» PARTII SECURING COMMON ASP.NET TASKS
CHAPTER7 Adding Usernamesand Passwords, 151
CHAPTER 8 Securely Accessing Databases........... 185
CHAPTER9 UsingtheFileSystem 207
CHAPTER 10 Securing XML e e e 225
» PART Il ADVANCED ASP.NET SCENARIOS
CHAPTER 11 Sharing Data with Windows Communication Foundation 255
CHAPTER 12 Securing Rich Internet Applications.......... 289
CHAPTER 13 Understanding Code Access Security.......... 315
CHAPTER 14 Securing Internet Information Server (IIS). 329
CHAPTER 15 Third-Party Authentication......... 359
CHAPTER 16 Secure Development with the ASP.NET MVC Framework. 385
111 0 =) 399

BEGINNING

ASP.NET Security

BEGINNING

ASP.NET Security

Barry Dorrans

F)WILEY

A John Wiley and Sons, Ltd., Publication

Beginning ASP.NET Security

This edition first published 2010

© 2010 John Wiley & Sons, Ltd
Registered office

John Wiley & Sons Ltd,

The Atrium, Southern Gate,
Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

ISBN: 978-0-470-74365-2
A catalogue record for this book is available from the British Library
Set in 9.5/12 Sabon Roman at MacMillan Publishing Solutions

Printed in Great Britain by Bell and Bain, Glasgow

To mum, who asked me more about the book's progress
almost as often as the long-suffering Wrox staff did.
And to Emilicon, who had to put up with my stress

and frustration when the words didn’t come.

ABOUT THE AUTHOR

BARRY DORRANS is a consultant based in the United
Kingdom, a public speaker, and Microsoft MVP in the
“Visual Tools — Security” category. His development
experience started out with a Sinclair ZX Spectrum,
graduating through IBM PCs, minicomputers,
mainframes, C++, SQL, Visual Basic, and the NET
framework. His approach to development and speaking
blends humor with the paranoia suitable for considering
security. In recent years, Barry has mentored developers
through the full lifecycle of ASP.NET development,
worked on the SubText Open Source blogging platform,
and started his own Open Source project for Information
Card identity providers, SharpSTS. Born in Northern
Ireland, he still misses the taste of real Guinness.

ACKNOWLEDGMENTS

CLICHED THOUGH IT IS, there are too many people to thank individually. I would like to specifically
acknowledge the help and inspiration of two fellow Microsoft MVPs — Dominick Baier (who has
been my main sounding board) and Alex Smolen (my Technical Editor, who has been there to catch
my mistakes and point out what I missed).

I'd also like to thank at those folks in various Microsoft teams who have put up with my questions,
queries, and misunderstandings with good humor over the years, and during the writing process,
especially the UK DPE team, without whose help I doubt I’d learn anywhere near as much.

Part of the confidence to write this book has come from my involvement with the UK developer
community, especially the DeveloperDeveloperDeveloper conferences. It would be impossible to
thank everyone who has let me speak, or come along to listen, but I would like to give special
thanks to community leaders and fellow authors Craig Murphy and Phil Winstanley for their
unflinching support of both my speaking engagements and their advice, as well as to

Trevor Dwyer, who bullied me into my first very conference presentation all those years ago.

CREDITS

ASSOCIATE PUBLISHER
Chris Webb

ASSISTANT EDITOR
Colleen Goldring

PUBLISHING ASSISTANT
Ellie Scott

DEVELOPMENT EDITOR
Kevin Shafer

TECHNICAL EDITOR
Alex Smolen

PROJECT EDITOR
Juliet Booker

CONTENT EDITOR
Juliet Booker

COPY EDITOR
Richard Walshe

SENIOR MARKETING MANAGER

Louise Breinholt

MARKETING EXECUTIVE
Kate Batchelor

COMPOSITOR
Macmillan Publishing Solutions, Chennai, India

PROOF READER
Alex Grey

INDEXER
Jack Lewis — j&j Indexing

COVER IMAGE
© technotr/istockphoto

VP CONSUMER AND TECHNOLOGY PUBLISHING
DIRECTOR
Michelle Leete

ASSOCIATE PRODUCTION DIRECTOR BOOK
CONTENT MANAGEMENT
Martin Tribe

CONTENTS

ACKNOWLEDGMENTS Xi
INTRODUCTION xxi

CHAPTER 1: WHY WEB SECURITY MATTERS

-

Anatomy of an Attack 2
Risks and Rewards 5
Building Security from the Ground Up 6
Defense in Depth 8
Never Trust Input 8
Fail Gracefully 8
Watch for Attacks 8
Use Least Privilege 8
Firewalls and Cryptography Are Not a Panacea 9
Security Should Be Your Default State 9
Code Defensively 10
The OWASP Top Ten 10
Moving Forward 12
Checklists 12
CHAPTER 2: HOW THE WEB WORKS 15
Examining HTTP 15
Requesting a Resource 16
Responding to a Request 18
Sniffing HTTP Requests and Responses 19
Understanding HTML Forms 22
Examining How ASP.NET Works 30
Understanding How ASP.NET Events Work 30
Examining the ASP.NET Pipeline 34
Writing HTTP Modules 34

Summary 37

CONTENTS

Xiv

CHAPTER 3: SAFELY ACCEPTING USER INPUT 39
Defining Input 39
Dealing with Input Safely 4

Echoing User Input Safely 41
Mitigating Against XSS 45
The Microsoft Anti-XSS Library 47
The Security Run-time Engine 48
Constraining Input 50
Protecting Cookies 52
Validating Form Input 53
Validation Controls 55
Standard ASP.NET Validation Controls 57
Using the RequiredFieldValidator 58
Using the RangeValidator 58
Using the RegularExpressionValidator 59
Using the CompareValidator 59
Using the CustomValidator 60
Validation Groups 61

A Checklist for Handling Input 63

CHAPTER 4: USING QUERY STRINGS, FORM FIELDS,

EVENTS, AND BROWSER INFORMATION 65
Using the Right Input Type 65
Query Strings 66
Form Fields 68
Request Forgery and How to Avoid It 69

Mitigating Against CSRF 71
Protecting ASP.NET Events 81
Avoiding Mistakes with Browser Information 83
A Checklist for Query Strings, Forms, Events,
and Browser Information 85

CHAPTER 5: CONTROLLING INFORMATION 87

Controlling ViewState 87
Validating ViewState 89
Encrypting ViewState 91
Protecting Against ViewState One-Click Attacks 92
Removing ViewState from the Client Page 94
Disabling Browser Caching 94

CONTENTS

Error Handling and Logging 95
Improving Your Error Handling 97
Watching for Special Exceptions 98
Logging Errors and Monitoring Your Application 99

Using the Windows Event Log 99
Using Email to Log Events 100
Using ASP.NET Tracing 102
Using Performance Counters 104
Using WMI Events 107
Another Alternative: Logging Frameworks 108

Limiting Search Engines 112
Controlling Robots with a Metatag 13
Controlling Robots with robots.txt 13

Protecting Passwords in Config Files 14

A Checklist for Query Strings, Forms, Events, and

Browser Information 116

CHAPTER 6: KEEPING SECRETS SECRET — HASHING
AND ENCRYPTION 117

Protecting Integrity with Hashing 118
Choosing a Hashing Algorithm 119
Protecting Passwords with Hashing 120

Salting Passwords 121
Generating Secure Random Numbers 121

Encrypting Data 124

Understanding Symmetric Encryption 124

Protecting Data with Symmetric Encryption 125
Sharing Secrets with Asymmetric Encryption 133
Using Asymmetric Encryption without Certificates 134

Using Certificates for Asymmetric Encryption 136
Getting a Certificate 136

Using the Windows DPAPI 147

A Checklist for Encryption 148
CHAPTER 7: ADDING USERNAMES AND PASSWORDS 151

Authentication and Authorization 152

Discovering Your Own Identity 152

Adding Authentication in ASP.NET 154

XV

CONTENTS

Using Forms Authentication 154
Configuring Forms Authentication 154
Using SQL as a Membership Store 158
Creating Users 160
Examining How Users Are Stored 163
Configuring the Membership Settings 164
Creating Users Programmatically 166
Supporting Password Changes and Resets 167

Windows Authentication 167
Configuring IIS for Windows Authentication 168
Impersonation with Windows Authentication 171

Authorization in ASP.NET 172

Examining <allow> and <deny> 173

Role-Based Authorization 174
Configuring Roles with Forms-Based Authentication 174
Using the Configuration Tools to Manage Roles 176
Managing Roles Programmatically 177
Managing Role Members Programmatically 179
Roles with Windows Authentication 179

Limiting Access to Files and Folders 180

Checking Users and Roles Programmatically 183
Securing Object References 183

A Checklist for Authentication and Authorization 184
CHAPTER 8: SECURELY ACCESSING DATABASES 185
Writing Bad Code: Demonstrating SQL Injection 186
Fixing the Vulnerability 190
More Security for SQL Server 194

Connecting Without Passwords 194

SQL Permissions 196
Adding a User to a Database 197
Managing SQL Permissions 197
Groups and Roles 197
Least Privilege Accounts 198

Using Views 198

SQL Express User Instances 200

Drawbacks of the VS Built-in Web Server 200

Dynamic SQL Stored Procedures 200

Using SQL Encryption 201
Encrypting by Pass Phrase 202
SQL Symmetric Encryption 202

Xvi

CONTENTS

SQL Asymmetric Encryption 204
Calculating Hashes and HMACs in SQL 205
A Checklist for Securely Accessing Databases 205
CHAPTER 9: USING THE FILE SYSTEM 207
Accessing Existing Files Safely 207
Making Static Files Secure 213
Checking That Your Application Can Access Files 215
Making a File Downloadable and Setting Its Name 216
Adding Further Checks to File Access 216
Adding Role Checks 216
Anti-Leeching Checks 217
Accessing Files on a Remote System 218
Creating Files Safely 218
Handling User Uploads 220
Using the File Upload Control 221
A Checklist for Securely Accessing Files 224
CHAPTER 10: SECURING XML 225
Validating XML 225
Well-Formed XML 226
Valid XML 226
XML Parsers 227
Querying XML 234
Avoiding XPath Injection 236
Securing XML Documents 237
Encrypting XML Documents 238
Using a Symmetric Encryption Key with XML 238
Using an Asymmetric Key Pair to Encrypt and Decrypt XML 242
Using an X509 Certificate to Encrypt and Decrypt XML 245
Signing XML Documents 246
A Checklist for XML 252
CHAPTER 11: SHARING DATA WITH WINDOWS
COMMUNICATION FOUNDATION 255
Creating and Consuming WCF Services 256
Security and Privacy with WCF 259
Transport Security 259

xvii

CONTENTS

Message Security 260
Mixed Mode 261
Selecting the Security Mode 261
Choosing the Client Credentials 262
Adding Security to an Internet Service 263
Signing Messages with WCF 274
Logging and Auditing in WCF 277
Validating Parameters Using Inspectors 280
Using Message Inspectors 283
Throwing Errors in WCF 286
A Checklist for Securing WCF 287
CHAPTER 12: SECURING RICH INTERNET APPLICATIONS 289
RIA Architecture 290
Security in Ajax Applications 290
The XMLHttpRequest Object 291
The Ajax Same Origin Policy 292
The Microsoft ASP.NET Ajax Framework 293
Examining the UpdatePanel 293
Examining the ScriptManager 296
Security Considerations with UpdatePanel and ScriptManager 299
Security in Silverlight Applications 301
Understanding the CoreCLR Security Model 301
Using the HTML Bridge 302
Controlling Access to the HTML DOM 303
Exposing Silverlight Classes and Members to the DOM 304
Accessing the Local File System 306
Using Cryptography in Silverlight 309
Accessing the Web and Web Services with Silverlight 312
Using ASP.NET Authentication and Authorization in
Ajax and Silverlight 313
A Checklist for Securing Ajax and Silverlight 314
CHAPTER 13: UNDERSTANDING CODE ACCESS SECURITY 315
Understanding Code Access Security 316
Using ASP.NET Trust Levels 318
Demanding Minimum CAS Permissions 319
Asking and Checking for CAS Permissions 320
Testing Your Application Under a New Trust Level 321
Using the Global Assembly Cache to Run Code Under Full Trust 324

xviii

CONTENTS

.NET 4 Changes for Trust and ASP.NET 327
A Checklist for Code not Under Full Trust 328
CHAPTER 14: SECURING INTERNET INFORMATION
SERVER (IIS) 329
Installing and Configuring 1IS7 330
IIS Role Services 331
Removing Global Features for an Individual Web Site 335
Creating and Configuring Application Pools 335
Configuring Trust Levels in IS 337
Locking Trust Levels 338
Creating Custom Trust Levels 339
Filtering Requests 340
Filtering Double-Encoded Requests 341
Filtering Requests with Non-ASCIl Characters 341
Filtering Requests Based on File Extension 341
Filtering Requests Based on Request Size 342
Filtering Requests Based on HTTP Verbs 342
Filtering Requests Based on URL Sequences 343
Filtering Requests Based on Request Segments 343
Filtering Requests Based on a Request Header 343
Status Codes Returned to Denied Requests 344
Using Log Parser to Mine IIS Log Files 344
Using Certificates 351
Requesting an SSL Certificate 352
Configuring a Site to Use HTTPS 354
Setting up a Test Certification Authority 354
A Checklist for Securing Internet Information Server (lIS) 357
CHAPTER 15: THIRD-PARTY AUTHENTICATION 359
A Brief History of Federated Identity 359
Using the Windows Identity Foundation to accept SAML
and Information Cards 362
Creating a “Claims-Aware” Web Site 363
Accepting Information Cards 365
Working with a Claims Identity 373
Using OpenlD with Your Web Site 374
Using Windows Live ID with Your Web Site 379
A Strategy for Integrating Third-Party Authentication with
Forms Authentication 382
Summary 383

XiX

CONTENTS

CHAPTER 16: SECURE DEVELOPMENT WITH THE ASP.NET

MVC FRAMEWORK 385
MVC Input and Output 386
Protecting Yourself Against XSS 386
Protecting an MVC Application Against CSRF 387
Securing Model Binding 387
Providing Validation for and Error Messages from Your Model 389
Authentication and Authorization with ASP.NET MVC 392
Authorizing Actions and Controllers 392
Protecting Public Controller Methods 393
Discovering the Current User 393
Customizing Authorization with an Authorization Filter 394
Error Handling with ASP.NET MVC 395
A Checklist for Secure Development with the ASP.NET
MVC Framework 398

INDEX

XX

399

INTRODUCTION

OVER THE PAST SEVERAL YEARS, I’ve been regularly presenting on security in .NET at conferences
and user groups. One of the joys of these presentations is that you know when you’ve taught
someone something new. At some point during the presentation, you can see one or two members of
the audience starting to look very worried. Security is a difficult topic to discuss. Often, developers
know they must take security into account during their development life cycle, but do not know
what they must look for, and can be too timid to ask about the potential threats and attacks that
their applications could be subjected to.

This book provides a practical introduction to developing securely for ASP.NET. Rather than
approaching security from a theoretical direction, this book shows you examples of how everyday
code can be attacked, and then takes you through the steps you must follow to fix the problems.

This book is different from most others in the Wrox Beginning series. You will not be

building an application, but rather, each chapter is based upon a task a Web site may need to
perform — accepting input, accessing databases, keeping secrets, and so on. This approach means
that most chapters can be read in isolation as you encounter the need to support these tasks during
your application development. Instead of exercises, many chapters will end with a checklist for the
particular task covered in the chapter discussions, which you can use during your development as a
reminder, and as a task list to ensure that you have considered and addressed each potential flaw or
vulnerability.

When you decide to test your applications for vulnerabilities, be sure that you run any tests against
a development installation of your site. If you have a central development server, then ensure that
you inform whoever manages the server that you will be performing security testing. Never run
any tests against a live installation of your application, or against a Web site that is not under your
control.

Be aware that your country may have specific laws regarding encryption. Using some of the methods
outlined in this book may be restricted, or even illegal, depending on where you live.

WHO THIS BOOK IS FOR

This book is for developers who already have a solid understanding of ASP.NET, but who need

to know about the potential issues and common security vulnerabilities that ASP.NET can have.
The book does not teach you how to construct and develop an ASP.NET Web site, but instead will
expand upon your existing knowledge, and provide you with the understanding and tools to secure
your applications against attackers.

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book is divided into three very broad sections, each containing several chapters.

Chapter 1,“Why Web Security Matters,” begins with a general introduction to Web security,
illustrates an attack on an application, and introduces some general principles for secure
development.

Part I, “The ASP.NET Security Basics,” addresses everyday common functions of an ASP.NET Web
site — the functions that can expose your application, and how you can secure them. The following
chapters are included in this section of the book:

> Chapter 2,“How the Web Works,” explains some aspects of how HTTP and ASP.NET
Web Forms works, shows you how to examine requests and responses, and examines how
the ASP.NET pipeline works.

> Chapter 3,“Safely Accepting User Input,” discusses inputs to your application, how these
can be used to attack your application, and how you should protect yourself against this.

» Chapter 4,“Using Query Strings, Form Fields, Events, and Browser Information,” covers
parameters, query strings, and forms, and examines how you can safely use them.

> Chapter 5,“Controlling Information,” takes a look at how information can leak from
your application, the dangers this exposes, and how you can lock information away from
accidental exposure.

» Chapter 6,“Keeping Secrets Secret — Hashing and Encryption,” delves into the basics
of cryptography — showing you how to encrypt and decrypt data, and sign it to protect
against changes.

Part II, “Securing Common ASP.NET Tasks,” focuses on common tasks for applications. The
following chapters are included in this section of the book:

» Chapter 7,“Adding Usernames and Passwords,” shows you how to add usernames and
passwords to your application.

> Chapter 8,“Securely Accessing Databases,” demonstrates the problems with accessing
databases, and how you can protect yourself against common attacks related to them.

> Chapter 9,“Using the File System,” talks about the file system, and how your application
can safely use it.

» Chapter 10, “Securing XML,” looks at XML, how you can validate it, and how to safely
query XML data.

Part III, “Advanced ASP.NET Scenarios,” looks at more advanced topics that not every application
may use. The following chapters are included in this section of the book:

> Chapter 11,“Sharing Data with Windows Communication Foundation,” covers Web
services, and the risks can they expose.

Introduction

> Chapter 12,“Securing Rich Internet Applications,” provides an introduction to Rich
Internet Applications, and shows you how you can safely utilize Ajax and Silverlight to
communicate with your server.

> Chapter 13,“Understanding Code Access Security,” provides you with some of the security
underpinnings of the .NET run-time, and shows how you can use them within ASP.NET.

> Chapter 14,“Securing Internet Information Server (I11S),” is a brief introduction to
securing your infrastructure, enabling you to appreciate how IIS can act as a first line of
defense.

» Chapter 15,“Third-Party Authentication,” looks at bringing third-party authentication
systems into your application, and discusses claims-based authentication, OpenlD, and
Windows Live ID.

> Chapter 16,“Secure Development with the ASP.NET MVC Framework,” provides a
summary of the ways that an ASP.NET MVC application can be protected against attacks.

Every effort has been made to make each chapter as self-contained as possible. There is no need to
read each chapter in order. Instead, you can use the instructions in each chapter to secure each part
of your Web site as you develop it. Some of the later chapters will contain references to previous
chapters and explanations — these are clearly marked.

WHAT YOU NEED TO USE THIS BOOK

This book was written using version 3.5 of the .NET Framework and Visual Studio 2008 on both
Windows Vista and Windows Server 2008. The sample code has been verified to work with .NET
3.5 and .NET 3.5 SP1. To run all of the samples, you will need the following;:

> Windows Vista or Windows Server 2008
> Visual Studio 2008

Most samples do not require a paid version of Visual Studio 2008, and you may use Visual Studio
Web Developer Express edition.

Some samples will need to be run under Internet Information Server (IIS), and some samples will
need SQL Server installed — they will work with SQL Server 2005 or later, and have been tested
with SQL Server Express.

The code in this book is written in C#.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

INTRODUCTION

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

1. These usually consist of a set of steps.

2. Fach step has a number.

3. Follow the steps to complete the exercises.

WARNING Boxes like this one hold important, notto-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and displayed like this.

As for styles in the text:

>

>
>
>

Webhighlight new terms and important words when we introduce them.
We show keyboard strokes like this: CtrkA.
We show filenames, URLSs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use boldface to emphasize code that is of particular

importance in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. Some of the source code used in
this book is available for download at http: //www.wrox.com . Once at the site, simply locate the
book’s title (either by using the Search box, or by using one of the title lists), and click the Download
Code link on the book’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-0-470-74365-2.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Validating Form Input | 53

Table 3-3 breaks down common browser support offered for HTTP-only cookies.

TABLE 3-3: Common Browser Support for HTTP-only Cookies

BROWSER VERSION READ PREVENTED WRITE PREVENTED
Internet Explorer 8 Yes Yes
Internet Explorer 7 Yes Yes
Internet Explorer 6 Yes No
Mozilla Firefox 3 Yes Yes
Mozilla Firefox 2 Yes Yes
Opera 9.5 Yes No
Opera 9.2 No No
Safari 3.0 No No
Google Chrome Initial Beta Yes No

ASP.NET 2.0 (and later) always sets the HTTPOn1y attribute on the session ID and forms
authentication cookies. You can configure all cookies created server-side to be HTTPOnly via
web.config, as shown here:

<system.web>
<httpCookies httpOnlyCookies="true"/>

</system.web>
If this is too restrictive, the Httponly fhg can be set programmatically, as shown here:

HttpCookie protectedCookie = new HttpCookie ("protectedCookie") ;
protectedCookie.HttpOnly = true;
Response.AppendCookie (protectedCookie) ;

An example Web site demonstrating HTTP-only cookies is provided in the code downloads for this

book, which you can use with different browsers to check their support for HTTP-only cookies. It is
important to remember that not all browsers support this attribute, and so you should not rely on it

solely to protect sensitive cookies.

VALIDATING FORM INPUT

Generally, you will validate user input via a form such as the one shown in Figure 3-5.

The fields on the form ask for the user’s name, a subject, the user’s blog address, the user’s
email address, and a comment. As you create a form, you have an idea of the input you expect
in each form field. For example, a name may consist of letters, numbers, and spaces.

54 | CHAPTER3 SAFELY ACCEPTING USER INPUT

An email address will have an “@” symbol and at least one period. A Web site address will begin
with “http://” (or perhaps “https://”), and the comment or subject fields cannot be blank.

Your Reply.
Comment Form
Fields denoted with a ** are required.
Your name: barryd :
Subject: |re: Example Blog Form] *
“You may also like to leave your email or website.
Your blog: http:iidunno.org/Default aspx
Your email barryd@idunno.org
(will not be
displayed]
Your message:
Publish Comment
Preview Your Comment.

FIGURE 3-5: An example of a Web form (taken from the author’s blog)

To validate input to your requirements, you could add a validation function, as shown in the
following sample:

private bool ValidateForm()
{
if (subject.Text.Trim().Length == 0 ||
subject.Text.Trim() .Length > 50)
return false;

if (comment.Text.Trim().Length == 0 ||
comment .Text.Trim() .Length > 512)
return false;

string nameRegex = @""[a-zA-Z]S$";
if (!Regex.IsMatch (
name.Text, nameRegex,
RegexOptions.Culturelnvariant) |
name.Text.Trim() .Length < 5 ||
name.Text.Trim() .Length > 50)
return false;

Validating Form Input | 55

string webRegex = @"~((ht|£)tp(s?)\:\/\/|~/|/)?2 ([\w]l+:\w+@)? ([a-zA-Z]{l} =
(WA)+ (\w]1{2,5}3)) (: [\NA1{1,51) 2 ((/2\w+/)+|/?) (\w+\.[\w] {3,4}) =
2 ((\2\w+=\w+) ? (&\w+=\w+) *)?2";
if (!Regex.IsMatch(
website.Text, webRegex,
RegexOptions.CultureInvariant))
return false;

string emailRegex = @"\w+ ([-+. ']1\w+) *@\w+ ([-.]\w+) *\ . \w+ ([-.]\w+) *";
if (!Regex.IsMatch(
email.Text, emailRegex,
RegexOptions.CultureInvariant))
return false;

return true;

}

The validation code shown uses the correct approach, checking for whitelisted values through the
Length property on field values and regular expressions. (Regular expressions are a formal language
for identifying strings of text, parsing, and matching them.) The validation procedure checks every
field, and rejects data that does not match the requirements set.

However, in the real world, things become more complicated. According to the Guinness

World Records, the longest name on a birth certificate is Rhoshandiatellyneshiaunneveshenk
Koyaanisquatsiuth Williams, which far exceeds the arbitrary upper limit of 50 characters. The
regular expression for name checking also excludes characters such as an apostrophe ('), so anyone
with a surname of O’Dell, for example, would not be accepted. The email regular expression
simply checks the format of the email, looking for text made up of characters or numbers, then an
@ sign and then more text to the right of the @ sign, a period, and then a minimum of three more
characters. This excludes many valid email addresses and, of course, there is no way to tell if an
email address is valid without sending a message to it and requiring a response.

Furthermore, the validation function does not indicate where it failed or if there was more than a
single failure. This makes it difficult for the user to figure out why input has been rejected. Finally, the
code runs on the server, so a user must submit the form before being told that the validation failed.

Adding validation functions to every form like this is a laborious process, and one that is prone to
error. ASP.NET includes common validation controls that allow you to minimize the validation
coding you must perform, and, if the validation controls provided as standard are not suitable, then
you can write your own.

Validation Controls

All ASP.NET validation controls are normal ASP.NET controls that also implement the Tvalidator
interface, as shown here:

public interface IValidator

{
void validate() ;
string ErrorMessage { get; set; }
bool IsvValid { get; set; }

56 | CHAPTER3 SAFELY ACCEPTING USER INPUT

As you can see, theTvalidator interface defines two properties (ErrorMessage andIsvalid)
and a single method (validate). When a validation control is placed on a page, it adds itself to the
page’s Validators collection. The page class provides a validate method that iterates through
the validators collection, calling each registered control. The validate method in each control
performs whatever validation logic has been written, and then sets the Isvalid andErrorMessage
properties appropriately. Each standard validation control also has a controlTovalidate property
that attaches the validation to the input control you wish to validate.

ASP.NET controls that trigger a postback have a causesvalidation property. When set to true,
a postback will cause the page’s validate method to be called before any of the control’s event
handlers run. Some controls (such as Button) will have a default causesvalidation value oftrue ;
others (generally those that do not automatically trigger a postback) do not.

Page processing does not stop when validation fails. Instead, the page property Isvalid is set
to false. It is up to you (as the developer) to check this property and decide if execution should
continue. If validation has not occurred at all, and you attempt to check Page.Isvalid, an
exception will occur.

In addition to the ErrorMessage property (which can be shown in the validationSummary control),
the standard ASP.NET validation controls also provide a Text property. This property can be used
to provide a visual indicator beside a form field that has failed validation, as shown in Figure 3-6.

A Validation Summary
N 4 control containing all the
current validation messages

N A single validation control, with
Erl the Text property set to

A

wkn

A ah Dok

A DTE

FIGURE 3-6: An example validation screen showing a validation summary and
validation controls

The screen displayed in Figure 3-6 shows the basic validation controls in action. The form that
produced this screen is as follows:

£orm id="forml" runat="server">
<asp:ValidationSummary ID="validationSummary" runat="server" />
Name: <asp:TextBox runat="server" ID="name"> {asp:TextBox>
<asp:RequiredFieldvValidator ID="nameRequired" runat="server"
ErrorMessage="You must enter your name" ControlToValidate="name"
Display="Dynamic" Text="*" />

Email: <asp:TextBox runat="server" ID="email" />

Validating Form Input

57

<asp:RequiredFieldValidator ID="emailRequired" runat="server"
ErrorMessage="You must enter your email"
ControlToValidate="email" Display="Dynamic" Text="*" />

<asp:RegularExpressionValidator ID="emailValidator" runat="server"
ErrorMessage="Your email address does not appear to be valid" Text="*"
ValidationExpression="\w+ ([-+."']\w+) *@\w+ ([-.]\w+) *\ . \w+ ([-.]\w+) *"
ControlToValidate="email"> fasp:RegularExpressionvValidator>

Web Site: <asp:TextBox runat="server" ID="website" />

<asp:RegularExpressionValidator ID="websiteValidator" runat="server"
ErrorMessage="Your web site address does not appear to be valid." Text="*"
ControlToValidate="website" Display="Dynamic"
ValidationExpression="http(s)?:// ([\w=-1+\.)+[\w=1+(/[\w- ./?%&=]*)?" /

 br />Comment:

<asp:RequiredFieldvalidator ID="commentRequired" runat="server"
ErrorMessage="You must enter a comment" ControlToValidate="comment"
Display="Dynamic" Text="*" />

br />

<asp:TextBox runat="server" ID="comment" Columns="50" Rows="5"
TextMode="MultiLine" /> kr /> br />

<asp:Button runat="server" ID="submit" Text="Submit"

OnClick = "submit_OnClick"/>

/£orm>

4

NOTE If you have a single button on your ASP.NET page, you may not have a
click handler for the button. It’s not strictly necessary. However, if you don’t have
a click handler, ASP.NET validation does not happen automatically, and when
you check the validation status using Page.Isvalid() , then an exception will be
thrown in some versions of ASP.NET. If you don’t want to add an event handler,
then you can manually perform validation by calling Page.validate() before
you check page.Isvalid() .

Standard ASP.NET Validation Controls

ASP.NET provides six validation controls:

>

>

>

>

>

RequiredFieldvalidator
RangevValidator
RegularExpressionvValidator
CompareValidator

CustomvValidator

Each control has some additional common properties

>

>

ControlTovalidate —JIhe name of the control the validation rule applies to.

EnableClientScript — When set tcfalse, no client-side validation will occur, and checks

will only happen once the page is submitted to the server.

58 | CHAPTER3 SAFELY ACCEPTING USER INPUT

» SetFocusOnError —When set to true, this will place the cursor inside the first field that
fails validation.

> Display —This controls how the error message is shown. The Display property can have
one of the following three values:

» None —The validation message is never displayed.
> Static —Space for the validation message is always reserved in the page layout.
> Dynamic —Space for the validation message is only reserved if the validation fails.

» validationGroup —A validation group allows you to place controls on a page into
logical groups, each with separate buttons for form submission. When a button with
a ValidationGroup property is clicked, any validation controls with a matching
ValidationGroup property will be fired.

Using the RequiredFieldValidator

TherRequiredFieldvalidator checks if the value of a control is different from its initial value.
At its simplest, when applied to a text box, the control ensures the text box is not empty, as
shown here:

Name: <asp:TextBox runat="server" ID="name"> {asp:TextBox>

asp:RequiredFieldvalidator ID="nameRequired" runat="server"
ErrorMessage="You must enter your name" ControlToValidate="name"
Display="Dynamic" Text="*" />

The control may also be applied to list boxes or drop-down menus. In this case, set the
Initialvalue property on the validation control, as shown here:

asp:DropDownList runat="server" ID="county">
<asp:ListItem Selected="True">Select a county</asp:ListItem>
<asp:ListItem >Antrim/asp:ListItem>
asp:ListItem>Armagh</asp:ListItem>
<asp:ListItem>Down</asp:ListItem>
<asp:ListItem>Fermanagh</asp:ListItem>
asp:ListItem>Londonderry</asp:ListItem>
@sp:ListItem>Tyrone</asp:ListItem>

</asp:DropDownList>

<asp:RequiredFieldValidator runat="server" ID="requiredCounty"
InitialValue="Select a county" ControlToValidate="county"
ErrorMessage="You must select a county" Text="*" />

All other validators will only run when the control they are validating is not empty (although the
CustomvValidator may be confgured to run on empty controls if necessary). If a form field is
mandatory, you must use a RequiredFieldvalidator .

Using the RangeValidator

Therangevalidator checks if the value of a control falls within a desired range for a desired type
(Currency,Date,Double,Integer,orStringlrrhedeﬁuﬂttypeisString.Thefoﬂowdngexanqﬂe
will validate if a text box has a value between 18 and 30:

Validating Form Input | 59

asp:TextBox runat="server" ID="age" />
a@sp:RangeValidator runat="server" ID="ageRange"
ControlToValidate="age"

MinimumValue="18" MaximumValue="30"
Type="Integer"

ErrorMessage="You must be between 18 and 30." Text="*" />

Using the RegularExpressionValidator

The RegularExpressionvalidator validates the value of a control value with a regular expression
set in the validationExpression property. In design mode, Visual Studio provides a list of common
regular expressions, including email address, Web site address, and various postal codes for selected
countries. You should remember that a regular expression is simply a pattern match. So, for example,
if you are accepting a ZIP code, you should perform further checks on its validity, as shown here:

asp:TextBox runat="server" ID="zipcode" />
asp:RegularExpressionValidator runat="server" ID="validateZipcode"
ControlToValidate="zipcode"
ValidationExpression="\d{5} (-\d{4})?"
ErrorMessage="Please enter a valid zipcode"
Text="*" />

Using the CompareValidator

Thecomparevalidator compares the value of a control against a static value, against the value
of another control, or against a data type. In addition to the data type check, the control provides
amnpaﬂsontypesEqual,GreaterThan,GreaterThanEqual,LessThan,LessThanEqual,andetEqual.

The following example compares the contents of a textbox against a value of yes" :

asp:TextBox runat="server" ID="confirm" />
asp:CompareValidator runat="server" ID="confirmValidator"

ControlToValidate="confirm"

ValueToCompare="yes"

Type="String"

Operator="Equal"

ErrorMessage="Enter yes to continue"

Text="*" />

If you want to compare the value of two controls (for example, a password change dialog), you set
the controlToCompare property and the operator to Equal, as shown here:

asp:TextBox runat="server" ID="password" TextMode="Password" />
asp:TextBox runat="server" ID="passwordConfirmation" TextMode="Password" />
asp:CompareValidator runat="server" ID="passwordValidator"
ControlTovValidate="password"
ControlToCompare="passwordConfirmation"
Operator="Equal"
ErrorMessage="Passwords do not match"
Text="*" />

60 | CHAPTER3 SAFELY ACCEPTING USER INPUT

If you want to check that the input entered matches a particular data type, then you set the
Operator property to DataTypeCheck , and theType property on the control to currency ,Date,
Double ,Integer, or String. Following is an example:

asp:TextBox runat="server" ID="anInteger" />
&sp:CompareValidator runat="server" ID="integerValidator"
ControlToValidate="anInteger"
Operator="DataTypeCheck"
Type="Integer"
ErrorMessage="You must enter an integer"
Text="*" />

Using the CustomValidator

Thecustomvalidator allows you to create your own customized validators that implement your
business logic. To add server-side validation, you implement a handler for the servervalidate
event. If you want to add client-side validation via JavaScript, you can specify a function name in
the clientvalidationFunction property. Finally, you can specify if the validator triggers even

if the bound control’s value is empty by setting the validateEmptyText to true . However, if you
want to match the behavior of the standard controls, then use a RequiredFieldvalidator instead.

The serverside event handler gets everything it needs in the SendervalidateEventArgs parameter.
This parameter has a value property, which contains the value from the control that triggered
validation. It also contains an Isvalid property, which you set to true or false , depending on the
results of your validation. It is best practice to set Tsvalid to false at the start of your code, and
only set it to true after successful validation. This ensures that if something goes wrong in your
logic, the safer option (marking a field as invalid) happens.

For example, the following code would declare a field and its custom validator:

&sp:TextBox runat="server" ID="quantity" />
asp:CustomValidator runat="server" ID="validateQuanity"
ValidateEmptyText="false"
ControlToValidate= "quantity"
OnServerValidate="OnValidateQuantity"
ErrorMessage="Quantities must be divisable by 10"
Text="*" />

The serverside code for the custom control would look something like the following;:

protected void OnValidateQuantity (object source,
ServerValidateEventArgs args)

{
args.IsvValid = false;

int value;
if (int.TryParse(args.Value, out value))
{

if (value % 10 == 0)

{

args.IsValid = true;

Validating Form Input | 61

Client-side validation functions have the same arguments:

script language="javascript">
function validateQuantity (source, args) {
args.IsvValid = false;
if (args.Value % 10 == 0) {
args.IsValid = true;

}

£script>

To enable client-side validation, you must set the ClientvalidationFunction property on the
custom validator control, as shown here:

asp:TextBox runat="server" ID="quantity" />

asp:CustomValidator runat="server" ID="validateQuanity"
ValidateEmptyText="false"
OnServerValidate="OnValidateQuantity"
ClientValidationFunction="validateQuantity"
ControlToValidate= "quantity"
ErrorMessage="Quantities must be divisable by 10"
Text="*" />

Validation Groups

In some cases, you may want to include more than one form via multiple buttons and event handlers
on a single page. With ASP.NET 1.0, this was problematic as soon as validation controls were used.
When the user clicked one button, all the
validation controls would fire. ASP.NET 2.0
introduced the validationGroup property, — o
which allows you to place controls in a group | [kl

and limit the validation process. For example, | Sign up

a login page may also contain a registration

Login

Usermme: Emal

page, as shown in Figure 3-7. -

The following code for the page in Figure 37

shows an example of grouping the validation

controls into different validation groups.

(The validationGroup properties are shown

in bold.) FIGURE 3-7: An example page with two forms

4«DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
ktml xmlns="http://www.w3.0rg/1999/xhtml">
kead runat="server">

<title>Validation Groups Example</title>
thead>
kody>

<form id="forml" runat="server">

<div id="loginForm">

<hl>Login</hl>

62 | CHAPTER3 SAFELY ACCEPTING USER INPUT

Username:
<asp:TextBox runat="server" id="loginUsername" />
<asp:RequiredFieldvalidator runat="server" id="loginUsernameRequired"
ValidationGroup="loginForm"
ControlToValidate="loginUsername"
ErrorMessage="You must supply your username"
> *fasp:RequiredFieldvalidator>
Password:
<asp:TextBox runat="server" id="loginPassword"
TextMode="Password" />
<asp:RequiredFieldvalidator runat="server" id="loginPasswordRequired"
ValidationGroup="loginForm"
ControlToValidate="loginPassword"
ErrorMessage="You must supply your password"
> *fasp:RequiredFieldvalidator>
br />
<asp:Button runat="server" id="login"
Text="login"
ValidationGroup="loginForm" />
</div>
<div id="signupForm">
k1>Sign up</hl>
Username:
<asp:TextBox runat="server" id="signupUsername" />
<asp:RequiredFieldvalidator runat="server" id="signupUsernameRequired"
ValidationGroup="signupForm"
ControlToValidate="signupUsername"
ErrorMessage="You must supply a new username"
> *fasp:RequiredFieldvalidator>
Email:
<asp:TextBox runat="server" id="signupEmail" />
<asp:RequiredFieldvalidator runat="server" id="signupEmailRequired"
ValidationGroup="signupForm"
ControlToValidate="signupEmail"
ErrorMessage="You must supply an email address"
> *fasp:RequiredFieldvalidator>

<asp:Button runat="server" id="signup"
Text="signup"
ValidationGroup="signupForm" />
</div>
</form>
/oody>
/ktml>

You can see that both the validation controls and the asp:Button controls have the property
set. When a button is clicked, the validation controls in its validationGroup will fire; any other
validation control will not execute.

WARNING Remember, to use validation you must set theCausesvValidation
property on any control that may cause a postback. You must check page.
IsValid during your code execution.

A Checklist for Handling Input | 63

TYPICAL UNTRUSTED INPUT SOURCES

The following is a list of common untrusted input sources. It is by no means
exhaustive — input varies with each application. You must decide on the
trustworthiness of your inputs.

> Form &lds (from Web controls or directly from the request object)
Query string variables
Databases

External Web services

HTTP headers

>

>

>

> Cookies
>

> Session variables
>

ViewState

A CHECKLIST FOR HANDLING INPUT

The following is a checklist you should follow when deciding how to deal with user input and how
to output it to a Web page:

>

Review all inputs to a system and decide if they are trustworthy— Remember that all
inputs should be considered untrustworthy by default. If input must be trusted and comes
from outside your application, it must be validated and sanitized. A good practice is to
perform validation for all inputs, trusted or not.

Review code that generates output— Remember that XSS attacks are dependent on using
untrusted input as direct output. Examine your code. Look for Response.wWrite, %= and
setting Text of Web Controls as well as other properties on ASP.NET controls.

Examine output functions and determine if they use untrusted input parameters— Once
all output parameters have been discovered, examine the values they are using to generate
output. If they are using untrusted input, then it will require encoding. Typical input sources
that generate output include database queries, the reading of files from the file system, and
calls to Web services.

Determine what encoding the output expects— Different output types require different
encoding methods. For example, HTML requires HTML encoding, URLs require
URL encoding, and so on.

Encode output— When assigning output, use the encoding you have determined to make
the output safe.

64 | CHAPTER3 SAFELY ACCEPTING USER INPUT

> Ensure cookies are marked asttponly. — As part of your layered defense, ensure that
any cookies that you do not need to access on the Web client are marked with the Httponly
attribute.

> Do not disable request validation on a sitevide basis. — Request validation should be

disabled on a per-page basis. This ensures that any page where you forget that input is
accepted will be protected until you add encoding to the page output and turn request
validation off.

> Use Microsojg Anti-XSS library and SRE . — The Microsoft AntiXSS library provides
more robust and flexible encoding methods than the standard .NET framework. In
addition, the SRE will automatically encode output for controls it knows about. However,
this is not an excuse to avoid explicitly encoding output yourself.

Using Query Strings, Form
Fields, Events, and Browser
Information

Input arrives into your Web application from various sources. Chapter 3 discussed how you
should treat input, how input should be considered untrustworthy by default, how you can
validate it, and how you can output it safely. This chapter introduces some of ways input
can arrive, the vulnerabilities each of these vectors are susceptible to, and how you can
mitigate against them.

In this chapter, you will learn about the following:
> How to pass input via query strings

How to use hidden form &lds

How forms can be hijacked

How the ASP.NET event model works

Y VYV VY

How to avoid common mistakes with browser information

USING THE RIGHT INPUT TYPE

HTTP allows input into your application in the following four ways:
> The query string
> Form &lds
> HTTP headers
>

Cookies

66 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

The base class for ASP.NET pages, Page, contains a property, Request of typeHttpRequest . When
your Page class is created by ASP.NET, you have access to the Request property. It is initialized and
contains the various inputs sent as part of the page request, as well as other information provided

by the ASP.NET run-time (such as the identity of the user, whether the page has been requested over
SSL, and so on). The Page class also contains a Response property that allows you to manipulate
the response being sent when your page has finished processing.

QUERY STRINGS

Aquery string is the part of a URL that contains data to be passed to a Web application as part of
a request. A question mark separates the query string from the address part of a URL (as defined in
RFC1738 and RFC3986). A typical URL containing a query string would be as follows:

http://site.example/path/page.aspx?querystring

Generally, query strings are used to pass parameters to a page consisting of name/value pairs, with
name separated from the value by an equals sign (), and the pair separated from other pairs by an
ampersand (&), as shown here:

namel=valuel&name2=value2&name3=value3

The name plus equals plus value plus ampersand is a convention set out in the HTML speciftation.
It is by no means mandatory. The obvious problem with using a query string to pass data is that
query strings are visible in the Web browser address bar. Tampering with the query string is a
simple matter of typing.

In 2007, the government of the United Kingdom (UK) introduced a new application system called
the Medical Training Application Service (MTAS) for junior doctors who were requesting training
placements. A junior doctor using the system discovered that by changing a query string parameter,
he could view messages to other doctors offering jobs. The site and information was exposed for

at least eight hours. It was further discovered that, by manipulating the query string, personal
information such as phone numbers, previous criminal convictions and even sexual orientation

of applicants were available. The formal name for this type of vulnerability is Insecure

Direct Object Reference .

The MTAS took a message identifier as one of its parameters. This message identifier was a direct
object reference to an internal data record and, worse, it consisted of four digits assigned in
consecutive order (for example, 0001, 0002, 0003). An attacker (or even a normal user, in the case
of MTAS) could tamper with the message identifier to access other messages. Usually, the reference
to a unique reference within a database (or any exposed data construct) could be vulnerable to this
type of attack.

Another common error is to specify filenames with query strings (or, indeed, any parameter). If

an attacker passes c:\windows\system32\config\sam and your code does not check whether
filenames are contained within its own scope, then the possibility exists that your application

may serve up the Windows password database, the Security Accounts Manager (SAM) file, or a
relative path such as . .\..\windows\system32\config\sam is provided, which breaks out of your

Query Strings | 67

application directory by using . . to navigate to the parent directory of the current directory. (This
is known as a Path Traversal Attack.)

ﬂ NOTEdmittedly, this is a worst-case scenario. Most Web applications run in a
Security context that restricts them to a particular area on the Web server. For
more information, see Chapter 9 and Chapter 14.

The best protection against this type of attack is to avoid exposing direct references to objects such
as files and database records in a query string or other parameter. Instead, use another key, index,

map, or indirect method that is easy to validate. If a direct object reference must be used, then you
must ensure that the user is authorized before using it.

For example, consider a system that contains orders, and users have the capability to view their
order status. Order numbers usually must be sequential, and the temptation is to have a URL such
as the following;:

http://mysystem/viewOrder.aspx?orderID=10001

Rather than use a direct object reference, you can mitigate against an insecure direct object
reference vulnerability by adding a new way to reference to the objects in the order class or order
table — in a manner that is not incremental or easy to guess. Typically, a Globally Unique Identifier
(GUID) is used. Now your URL would look like the following:

http://mysystem/viewOrder.aspx?

orderID=E1109F32-A533-42¢c7-A5FF-45F0334C909E

In addition, you must implement an access control check (if appropriate) because GUIDs are only
guaranteed to be unique, not difficult to guess, and, if used in a query string, could be discovered
by an attacker looking through the browser history or other logs. In the orders scenario, you
would typically not allow anonymous access to the page, and you would check that the user who is
attempting to view the order is, in fact, the person who placed the order, or a user within your own
company who is authorized to do so (such as an account manager or an employee responsible for

fulfilling the order).

In ASP.NET, query strings are typically used with the HyperLink control, or as part of the cross-
page postback mechanism provided by the PostBackURL property on controls that can trigger
postbacks.

68 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

FORM FIELDS

Hidden form fields are another method of embedding input in a page. A hidden form field is a
type of form input field that is not displayed to the user — for example #nput type="hidden"
name="example" value="hidden" /> . A user (or an attacker) can only see these felds by viewing
the source of an HTML page.

Because the feld is hidden from view it is tempting to assume that the values set in these fields do
not change. But this would be a mistake.

Shopping cart software has been a typical culprit in trusting the immutability of hidden form fields.
In 2000, the Common Weakness Enumeration site (http://cwe.mitre.org/) listed fve shopping
cart packages that allowed price modifications because the price for individual items was exposed
in a hidden form field. In that year, the Lyris List Manager allowed list subscribers to obtain
administrator access to the Web control panel by modifying the value of the 1ist_admin hidden

form field.

The mitigation for this vulnerability (known as External Control of Assumed Immutable

Web Parameter in the Common Weakness Enumeration Database, a dictionary of common
software flaws available at http://cwe.mitre.org/) is simple — never assume hidden form

field values, or, indeed, any client-side parameter will never change. Furthermore, never store data
that you don’t want the user to know (like system passwords or cryptographic keys) inside a hidden

form field.

In ASP.NET, you can pass data between postbacks in a special hidden field called viewstate .
This does not free you to put secrets into ViewState because, by default, viewstate is not
encrypted. It is, however, protected against tampering by default. viewState is covered in detail
in Chapter 3.

J] WARNING The=quest class allows you to access input by its name— for
7w example Request ["example"] . This method of accessing your input should be
avoided at all costs because the Request indexer first checks the query string,
then form variables, then cookies, and finally server variables to supply the
named input. If there are duplicate input names in any of these locations, only
the first matching input will be returned, with no indication of where it came
from and no indication if there are more matches. It is safest to be specific
when looking for input, and to use the Request .QueryString, Request.Form,

Request .Cookies and Request .ServerVariables collections.

Request Forgery and How to Avoid It | 69

REQUEST FORGERY AND HOW TO AVOID IT

In 2008, Princeton University researchers William Zeller and Edward W. Felten discovered
vulnerabilities in four major Web sites — including one against INGDirect, which allowed them to
access a victim’s bank account and transfer money from one account to another. The attack was
made possible by forcing a user who was already logged into INGDirect to perform the money
transfer process, a vulnerability known as Cross Site Request Forgery (CSRF). The transfer process
is driven by multiple HTML form submissions, which the researchers automated by writing an
HTML page that contained a copy of the forms, and then submitted them without user intervention
via JavaScript. You can read their findings and the forms and methods they used in the paper they
pubhshedathttp://citp.princeton.edu/csrf/.

In order to understand how the attack works, you must understand how Web sites authenticate user
requests. When a user logs into a Web site, the Web site will generally create a cookie on the user’s
machine. From that moment forward, until the cookie expires or is deleted when the browser is
closed, that browser is authenticated and authorized by the Web site. If an attacking Web site is able
to send a request to the vulnerable Web site, the site has no way of knowing that it is under attack.
Since the Web site already trusts the user (because of the presence of the authentication cookie),

the Web site executes the request and processes it as if the user had made the request deliberately. If a
Web site uses HTTP Authentication (where the user is prompted for their username and password
by a dialog box in the browser, rather than an HTML page), then it is the browser that remembers
the user has authenticated to the Web site and will send the username and password with each
subsequent request.

Consider a simple Web site that allows users to read and delete messages. The Web site has been
badly written and the send message page works using query string parameters. For example,
http://www.example.com/sendMessage.aspx?to=boss@example.com&subject=I resign

fmessage=Take this job and ... WKnﬂdSendznlmnaﬂtOboss@example.cmneprhﬁngthe
user has resigned. All an attacker has to do to exploit this is to somehow get the user’s browser to
send a request for sendMessage . aspx, and doing so is simple. All the attacker does is create a Web
page including the following code:

img src= "http://www.example.com/
sendMessage.aspx?to=boss@example.com&subject=I+resign&message= «
Take+this+job+and+... ">

If an unfortunate user and logged into example.com and is lured to a page containing the img tag
shown previously, the browser will look at the src parameter and load it. The example.com Web
application will see the incoming request and the authentication cookie it placed when the user
logged in, recognize the user, and run the code contained in sendMessage.aspx . The attackers site
has forged a request, sourced from the attacking site, but destined for the vulnerable Web site, thus
crossing sites. Figure 4-1 shows how this type of CSRF works.

70 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

Login Processs———»

User’s Browser Vulnerable Web site

@4— Authentication Cookie ——— |

User’s Browser Vulnerable Web site

Authentication Process

Browses away Authentication
from

vulnerable site

— Browsesto ——» [
—

User’s Browser Attacking Web site

Authentication
Cookie

<+— Delivers Payload
<img src="http://
mysite.com/
delete.aspx?id=somethi Attacking
ngImportant"> Web site

User’s Browser

Web Browser
loads page
including attack
payload

Authentication
Cookie

—Loads attack URL and sends cookie = |2

Authentication

Cookie

User’s Browser

Vulnerable Web site

Sees Cookie
Recognizes
User

\ ‘ Processes Request

Exploit Occurs

Authentication
Cookie

FIGURE 4-1: An illustration of a CSRF attack

Request Forgery and How to Avoid It | 71

The obvious mitigation to a URL-based attack like this would be to switch to HTML forms. Using
forms would be obeying the HTML specification — a URL-driven (GET) request should never
change state. RFC2616 (the HTTP 1.1 specification) states in section 9.1.2 that the GET andHEAD
HTTP methods should not have the significance of taking an action other than retrieval. Each GeT
request should be idempotent — that is, every request should return the same result.

J) WARNING You may recall from Chapter 2 that a postback occurs when

:’: an ASP.NET page submits the form it generates back to itself, usually via a
JavaScript-triggered form submission. You might, therefore, consider that
checking page.IsPostback is a reasonable way to check that a request is not
driven from the query string. Unfortunately, this is not the case. If you send a
GET request to an ASP.NET page that includes the__viewState parameter,

the __Eventvalidation parameter, and any other form parameters from

your page in the query string, then ASP.NET considers this to be a postback.
Depending on your page’s function, you may end up changing state — breaking
the HTTP specification. You should always check the HttpMethod of the request
in addition to Page.IsPostback like so:

if (Page.IsPostBack & &Request.HttpMethod=="POST")
{

// Perform my form actions

However, moving to forms is not enough. An attacker can easily build a form on his or her Web site
using the same field names and types as those on your Web site. The attack form would then have
its action parameter set to the vulnerable Web site and JavaScript used to submit the form without
user interaction. This was how the INGDirect attack worked.

You may be aware that, during an HTTP request, a header called REFERER may contain the URL of
the previous page in the browser history. This header could be used to check if a form was submitted
from a page on the same Web site, except that some browsers and Internet privacy software strip
this header. So what can you do to ward off CSRF attacks?

Mitigating AgainsCSRF
For a CSRF attack to work, the following conditions must be met

> The attacker must have knowledge of sites on which the victim is currently authenticated.
These sites may be Internet sites or intranet applications.

> The target site must use ambient authority, where the browser sends authentication credentials
with each request.

> The target site must not have secondary authentication for actions, such as a requirement to
re-enter a password.

72 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

The common mitigation technique against CSRF for ASP.NET sites is to useviewState in
combination with a viewStateUserkey. (See Chapter 5 for more details.) However, this presents
some disadvantages:

>

>

>

ViewState must be enabled, which may not always be the case in optimized Web sites.

You must have a way of uniquely identifying users, either by their login identity or by some-
thing like a session identifier.

TheriewstateUserKey must be manually set within your code, something that is easy
to forget.

If theviewstateUserKkey does not meet your needs, another method of mitigation is to add a token
to every form, which is verified when the form is submitted. You must generate a token for every
session, store it in session state or in a cookie on the user’s machine, insert the token (or a value
generated from it) into each form, and check it with every form submission. However, you can
automate the entire process by implementing an HTTP Module.

An HTTP Module (as you may remember from Chapter 2) is an object that sits in the ASP.NET
pipeline, and can hook into the processing of a request or the return of a response. To add CSRF
protection to every form submission, you should implement the following actions:

1.
2.

3.

If a request is from a new user (no cookie is sent), generate a unique token for that user.

If the request is a GET request, store that token in a session cookie on the user’s browser.
(A session cookie is one that is deleted when the user closes the browser.)

If the request is a POST request (or PostBack) and the token is not present, reject the request
as a potential CSRF attack.

If the request is a POST request (or PostBack), read the token from the user’s browser and
compare it to the token embedded in the ASP.NET Web form. If the tokens do not match,
or the token is missing, reject the request as a potential CSRF attack.

If the tokens match, allow the request to continue.

When the request is completed, but before the response is set, examine the response to look
for an ASP.NET Web forms. If one is present, automatically add the token (or a value gener-
ated from it) into the form as a hidden field.

You should note that only form submissions are protected. Any pages driven by query strings
(GET requests) are not protected, as you should be obeying the HTML speciftation.

Writing an HTTP Module to Protect Against CSRF Attacks

In this example, you will write an HTTP Module that will perform the various actions necessary to
protect against a CSRF attack. In doing so, you will not only protect your Web application, but you
will learn how to hook into various stages of the ASP.NET pipeline and perform actions automatically
without having to add code into your pages’ classes.

Request Forgery and How to Avoid It | 73

The purpose of this example is not to teach you everything about HTTP Modules. Rather, it will
introduce you to how to use HTTP Modules to intercept requests, and teach you techniques to provide
a security layer. If you have no experience with writing an HTTP Module, Chris Love has published a
Wrox Blox titled “Leveraging httpModules for Better ASP.NET applications,” which will guide you
through writing an HTTP Module. (See http: / /www.wrox.com/WileyCDA/WroxTitle/
Leveraging-httpModules-for-Better-ASP-NET-applications.productCd-0470379391.html

for more information.)

1.

2.

In Visual Studio, create a new Class Library solution called anticsrr. Delete the default file
Classl.cs, because you will be creating a source file from scratch.

Right-click on the References folder in Solution Explorer and choose Add Reference. Add a
reference to System.Web .

Right-click on the project in Solution Explorer and choose “Add a new class”. Name the class
flename AntiCSRF.cs. A new file will be created with the following code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace AntiCSRF
{
class AntiCSRF
{
}

Creating an HttpModule

1.

Add a using statement for System.Web. Change the class to be public and derive from
THttpModule. Your class file should now look like the following;:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Web;

namespace AntiCSRF

{
public class AntiCSRF : IHttpModule
{
}

Z:k{:;e

Place the cursor in THttpModule and a small rectangle Inplementinteriace JHHpMadule

will appear underneath the 1 ofTHt tpModule. Clicking
the rectangle will produce the menu shown in Figure 4-2. FIGURE 4-2: The implementation menu

| Explicitly implement interface THttpModule

74 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

Choose the option to “Implement interface ‘IHttpModule’”. Code will be created in your source
file that implements the THttpModule interface. Remove the contents of the default implementa-
tions that throw Not ImplementedExceptions. Your class file will now look like the following

namespace AntiCSRF
{
public class AntiCSRF : IHttpModule
{
#region IHttpModule Members
public void Dispose()
{
}
public void Init (HttpApplication context)
{
}
#endregion

Hooking Your HttpModule Into the ASP.NET Pipeline

1.

To hook into the ASP.NET pipeline, you must register for the events your module will respond to.
For AntiCSRF, you must respond to two events:

» PreSendRequestHeaders will allow you to drop the CSRF token as a cookie.

» PreRequestHandlerExecute will allow you to check the cookie before a page is executed,
and add page level handlers to add the hidden form file that you will check against.

You register events in the Tnit function by using the context parameter. Each event takes two
parameters: an object source and anEventArgs args. Change the Init method to add han-
dlers for these events, and add empty functions to put the anticSRF code into. Your class should
look something like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Web;

namespace AntiCSRF
{
public class AntiCSRF : IHttpModule
{
#region IHttpModule Members

public void Dispose()
{
}

public void Init (HttpApplication context)
{
context .PreSendRequestHeaders +=
new EventHandler (PreSendRequestHeaders) ;

Request Forgery and How to Avoid It | 75

context.PreRequestHandlerExecute +=
new EventHandler (PreRequestHandlerExecute) ;

}

#endregion

private static void PreSendRequestHeaders (
object source, EventArgs args)

private static void PreRequestHandlerExecute (
object source, EventArgs args)

The source parameter is an instance of the current Httpapplication that, when cast to the cor-
rect class, allows access to the Request ,Response , andContext properties you would see if you
were inside a Web form.

The first event you will implement is PreRequestHandlerExecute .

Adding Hooks into Page Events

1. Add a using statement for System.web.UT at the top of the class, and then change the
PreRequestHandlerExecute method to be as follows:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{
HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
if (context.Handler != null)
{

Page page = context.Handler as Page;
if (page != null)

{

}

This code checks that the request is one that ASP.NET handles, and that it is handled by a class that
derives from System.wWeb.Page. Once you have a Page object, you can add event handlers to the
page lifecycle. The Page PrerRender event allows you to change the contents of a page before they
are output. So you can use this to append a hidden form field to the page to carry the CSRF token.

2. Addausing statement for Ssystem.Globalization at the top of your class, and then add the fol-
lowing method to your module class:

private static void PagePreRender (object source, EventArgs eventArgs)
{

Page page = source as Page;

if (page != null & &page.Form != null)

76 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

string csrfToken;
HttpContext context = HttpContext.Current;

if (context.Request == null ||
context.Request.Cookies == null ||
context.Request.Cookies["__CSRFCOOKIE"] == null ||

string.IsNullOrEmpty (context.Request.Cookies["__ CSRFCOOKIE"].Value))

csrfToken = Guid.NewGuid() .ToString("D",
CultureInfo.InvariantCulture) ;
context.Items["Wrox.CSRFContext"] = csrfToken;
}

else
csrfToken = page.Request.Cookies["__ CSRFCOOKIE"] .Value;

ObjectStateFormatter stateFormatter = new ObjectStateFormatter();
page.ClientScript.RegisterHiddenField("__ CSRFTOKEN",
stateFormatter.Serialize (csrfToken)) ;

This method first checks whether the page exists and contains a form. It then checks whether

a CSRF cookie is present. If a cookie is not present, it generates a new token and stores the value
in the HttpContext for the current request so that it can be retrieved later to create the cookie.

Otherwise, it reads the cookie value for the token. Finally, the token is serialized using the same
method as viewsState , and a hidden feld is added to the form using RegisterHiddenField .

3. Of course, this method will never get called without adding it to the event handlers for the page.
So add the following highlighted line to the PreRequestHandlerExecute method:

private static void PreRequestHandlerExecute (object source, EventArgs eventArgs)

{

HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
if (context.Handler != null)

{
Page page = context.Handler as Page;
if (page != null)
{
page.PreRender += PagePreRender ;

Registering Your HttpModule

At this point, you now have a CSRF token added to every form, and you may well want to see the
module in action. Before an HttpModule can be used, however, it must be registered in a site’s web
.config file. If you look at the default web.config file for a Web site, you will see module registrations
in system.web, as shown here:

system.web>

<httpModules>

Request Forgery and How to Avoid It | 77

<add name="ScriptModule"
type="System.Web.Handlers.ScriptModule, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, =
PublicKeyToken=31BF3856AD364E35" />
..</httpModules>

£system.web>

If you are running IIS7 in integrated pipeline mode, then module registrations go into the system
.webServer element, as shown here:

system.webServer>
<modules>
<remove name="ScriptModule" />
<add name="ScriptModule" preCondition="managedHandler"
type="System.Web.Handlers.ScriptModule, =
System.Web.Extensions, Version=3.5.0.0, =

Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
</modules>

£system.webServer>

In the example web.config snippets shown above, you can see that the Ajax Web extensions module is
added to the ASP.NET pipeline. The httpModules element (or the modules element for IIS7) can have
one of the following three child elements:

>

add —This element registers a module within an application. The add element takes two
attributes: name (which is a friendly name for a module) andtype (which specifes the class and
assembly combination containing the module with optional version, culture, and public key
information). For the IIS7 integrated pipeline module registration, add takes an additional optional
parameter, precondition (which confgures the conditions under which a module will run). As
ASP.NET loads a module, it first searches in the \bin directory of the application, and then the
system assembly cache. Modules are loaded in the order they appear within the web.config fle.

Remove —This element removes a module from an application. The Remove element takes a single
element, name (which is the friendly name you used when adding a module).

clear —This element clears all modules form an application. The clear element takes no
parameters at all, and removes every registered handler (including the default handlers that
provide authorization and authentication, as well as other useful functionality). So be very careful
that removing everything is what you want to do.

To check that everything is working so far, create a new ASP.NET Web application in your
solution, and add a reference to your module project. Set the new Web application to be the
default project in Visual Studio, and add the HTTP Module to the httpModules section ofweb
.config, as shown here:

<system.web>

<httpModules>
<add name="ScriptModule" =
type="System.Web.Handlers.ScriptModule, =

78 | CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

System.Web.Extensions, Version=3.5.0.0, =

Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

8dd name="AntiCSRF" type="AntiCSRF.AntiCSRF, AntiCSRF"/>
</httpModules>

£system.web>

2. If you now run the default page in your test Web site and view the HTML code, the hidden form
field holding the CSRF token is now inserted into the HTML without any code in the page itself,
as shown here:

4«DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

ktml xmlns="http://www.w3.0rg/1999/xhtml">
kead> kitle>

£title> thead>
body>
<form name="forml" method="post" action="Default.aspx" id="forml">
div>
<input type="hidden" name="__ CSRFTOKEN" id="__CSRFTOKEN"
value="/wEFJD1hNzNhYjI1LWZjNTYtNGI1NiO05MzYOLTZkYzhhMmM2NTg2Mw==" />
imput type="hidden" name="__ VIEWSTATE" id="__ VIEWSTATE"
value="/wEPDWULLTE2MTY20DcyMj1kZHC01nphXvgGDcIfOINvg3cjQter" />
/div>
</form>
£body>
£html>

Now, the token will be placed into every form. All that remains is to drop the matching cookie, to
check the values of the cookie, and to ensure the form fields match.

Dropping the CSRF Cookie

1. To drop a cookie during the response, you must create and add it after the response has been cre-
ated, but before it has been written. HTTP cookies are set as part of the response headers, so you
must drop the cookie before the headers are sent; otherwise, it will be too late. So you must add
aneventhandkrtothePreSendRequestHeadersevent

2. To pass the value of the cookie from the code you created in the Prerender event, you must
use the HttpContext object, which is available to all events within the page lifecycle. If you
examine the code you wrote, you will see the following:

HttpContext context = HttpContext.Current;

context.Items["Wrox.CSRFContext"] = csrfToken;

3. The Httpcontext class provides an Items property, a key/value collection that is used to share
data between stages in an HttpModule and anHttpHandler during the lifetime of a request. Fill
in the empty PreSendRequestHeaders method as follows:

Request Forgery and How to Avoid It | 79

private static void PreSendRequestHeaders (object source, EventArgs eventArgs)

{
HttpApplication application = (HttpApplication)source ;
HttpContext context = application.Context ;

if (context.Items|["Wrox.CSRFContext"] != null)

{
HttpCookie csrfCookie = new HttpCookie("__CSRFCOOKIE")

{
Value = context.Items["Wrox.CSRFContext"].ToString(),
HttpOnly = true

}
context .Response.Cookies.Add (csrfCookie) ;

}

In the PreRender event for the Page, you added the CSRF token to Context . Items if it was
not already present as a cookie. In the method directly above, you can check for the value in the
Context.Items property and drop the appropriate cookie. The cookie is marked as Httponly to
reduce the attack surface for the Cross-Site Scripting (XSS) attacks detailed in Chapter 3.

Finally, you must add the check that the token value and token cookie match. These types of
checks are placed inside the PreRequestHandlerExecute event handler because you will need
to stop the processing of the request before the page handler takes over. Add the following high-
lighted checking;:

private static void PreRequestHandlerExecute (object source, EventArgs eventArgs)
{

HttpApplication application = (HttpApplication)source;

HttpContext context = application.Context;

if (context.Handler != null)

{
Page page = context.Handler as Page;
if (page != null)
{

page.PreRender += PagePreRender;

if (context.Request.HttpMethod.Equals("POST",
StringComparison.Ordinal))

if (context.Request != null)
{
HttpCookie csrfCookie =
context .Request.Cookies ["__CSRFCOOKIE"]
string csrfFormField = context.Request.Form["__ CSRFTOKEN"] ;

if (string.IsNullOrEmpty(csrfFormField) &&
(csrfCookie == null ||
string.IsNullOrEmpty (csrfCookie.Value)))
throw new Exception("Cookie and form field missing")

if (csrfCookie == null ||
string.IsNullOrEmpty (csrfCookie.Value))

80 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

throw new Exception("Cookie missing")

if (string.IsNullOrEmpty(csrfFormField))
throw new Exception("Form field missing")

string tokenField = string.Empty ;
ObjectStateFormatter stateFormatter =
new ObjectStateFormatter()
try
{
tokenField =
stateFormatter.Deserialize(
context .Request.Form["__ CSRFTOKEN"]) as string
}

catch

{

throw new Exception("Form field format error");
}
if (csrfCookie.Value.Equals(tokenField))

throw new Exception("Mismatched CSRF tokens")

The previous verification code will only execute after a form submission, because it checks that the
HTTP verb for the request is POsST, as described in Chapter 2 when you examined the differences
between request verbs.

One slightly unusual feature of the checking code is that during deserialization of the token, any
exception is caught in contradiction to the general .NET framework guidelines. This is done for safety
reasons. Any error indicates a problem, where it is acceptable to move outside the guidelines.

Summary

You now have an HttpModule that protects against CSRF. To test it, you can create a form with a
Submit button, load the form, delete the cookies for the site, and then submit the form. This should
throw an exception. Unfortunately, Internet Explorer caches cookies while it is running. So, to
perform this test, you should use Firefox, which will delete cookies from memory when you clear them
from disk.

If you want to download a more complete CSRF protection module (one from which this sample is
based), one is available at http: //www.codeplex.com/AntiCSRF. The complete module throws custom
exceptions. This allows you to log and filter the exceptions more explicitly. It also adds the capability
to redirect to an error page, exclude pages from the checks, and customize the cookie and form field
names used.

Protecting ASP.NET Events | 81

PROTECTINGASP.NET EVENTS

When you were testing the CSRF protection module you wrote, you may have tested it on a page
that raises postbacks. You may have noticed another hidden form field, _ EVENTVALIDATION. A
common interface design for Web applications is to show or hide various parts of a Web page based
on who a user is, and what that user can do. For example, users in an administrative role may see
extra buttons and text on a page (such as “Delete comment” or “Modify price”).

This is generally implemented by including every possible control on a page, and hiding or disabling
them at run-time as the page loads using the role membership provider that ASP.NET provides, as
shown here:

if (!User.IsInRole("siteAdmin"))
adminPanel .Visible = false;

When a control is hidden, the HTML it would generate is no longer included in the HTML output
for a page. When a control is disabled, then, typically, the HTML-enabled attribute is set to false
when the control’s HTML is rendered.

Examining Event Validation

As you learned in Chapter 2, postbacks work by setting two JavaScript fields before the form is sent to
the server. But what happens if you hide or disable a control and inject the hidden control’s name
into the hidden form field before a form is submitted?

1. Create a new Web application and replace the contents of default.aspx with the following:

%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default"
EnableEventValidation="false"%>

4«DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

ktml xmlns="http://www.w3.0rg/1999/xhtml">
kead runat="server">
<title> #title>
thead>
kody>
<form id="forml" runat="server">
<div>
<p>User : Trevor Dwyer
<asp:LinkButton ID="view" runat="server" Text="View"
onclick="view_OnClick" /> fbsp;
<asp:LinkButton ID="delete" runat="server" Text="Delete"
onclick="delete_OnClick" /></p>
<p> a&@sp:Literal ID="action" runat="server" /> £p>
</div>
</form>
£body>
£html>

82 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

2. Change the code behind file to the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{

}
protected void view_OnClick(object sender, EventArgs e)
{

action.Text = "View Clicked";

protected void delete_OnClick(object sender, EventArgs e)
{

action.Text = "Delete Clicked";
}

When either link button is clicked, the page will change to contain a message highlighting which button
was clicked. If you view the source for the page, you will see that link buttons work via JavaScript. For
example, the HTML rendered for the View button is javascript:__doPostBack('view', ''). You
can paste this JavaScript into the address bar in IE to trigger the postback.

3. Change the Page_Load method to add the following code, which will hide the Delete button when
the current user is not in the siteAdmins role:

protected void Page_Load(object sender, EventArgs e)
{
if (!User.IsInRole("siteAdmins"))
delete.Visible = false ;
}

When you run the adjusted page, you will see the Delete button is no longer present (as we haven’t
enabled roles, so any role membership check will always return false).

4. Now, enter javascript:__doPostBack('delete','') into the address bar and click Enter. You
will see that the delete onclick event was fred, but why is this? If you examine the page declara-
tion you will see that event validation was disabled, as shown here:

%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default"
EnableEventValidation="false" %

If you re-enable event validation by removing EnableEventvalidation="false" from the page
declaration (it is enabled by default), and then attempt to trigger the delete event again, you will see
that an exception, “Invalid postback or callback argument”, is thrown.

Avoiding Mistakes with Browser Information | 83

Event validation was introduced in ASP.NET 2.0 to prevent the falsification of events. Event
validation is the default behavior for ASP.NET. When validation is enabled, controls that render
(which excludes those controls that are not visible) will register themselves with event validation.
When a postback occurs, ASP.NET looks through the registered events to discover if the control
that would receive the event has been registered.

Event validation also covers postback data from list controls. For example, if you have a drop-down list
of status codes (some of which are only available to administrators), and an attacker sends a falsified
request containing one of the status codes that was not in the list, then an exception will occur.

Event validation should be part of your defense in depth strategy. However, it should not be your
sole defense. Because it is up to controls to register for event validation, it is possible that a third-
party control (or, indeed, one of your own custom controls) may not register for event validation.
(A control registers by calling RegisterForEventvalidation during rendering.) If you have
controls or values within controls that change based on any condition (for example, a user’s group
membership), then always perform checks within the event handler to validate that the event should
have occurred, or the values that are sent are valid for the conditions you set.

AVOIDING MISTAKES WITH BROWSER INFORMATION

Request headers are the final type of input that is transmitted with every request. You can access

the request headers via the Headers property on the Request class. In a normal (valid) request,
these headers are set by the browser. For example, the headers shown in Table 4-1 were sent to a test
page by IE7.

TABLE 4-1: Example Request Headers

HEADER NAME VALUE
Connection Keep-Alive
Accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-ms-application, application/vnd.ms-xpsdocument,
application/xaml+xml, application/x-ms-xbap, application/
x-silverlight, application/x-shockwave-flash, */*

Accept-Encoding gzip, deflate

Accept-Language en-gb

Host localhost:49258

Referer http://localhost:49258/Request%20Headers/Default.aspx
User-Agent Mozilla/4.0 (compatible with MSIE 7.0; Windows NT 6.0; SLCC1;

.NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506;
.NET CLR 3.0.30618; .NET CLR 3.5.21022; .NET CLR 3.5.30729)

UA-CPU x86

84 | CHAPTER4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

A common mistake made when dealing with browser information is to trust it implicitly. Like
everything else from the client, browser information can be faked or removed. For example, the
Referer header (the spelling mistake of “Referrer” is now enshrined in the HTTP standards) is
commonly stripped by some browser privacy software. This header is supposed to contain the URL
for the page that referred the current request, either via a link or a form submission. For example,
if http://www.wrox.com/example.html contained a link to http://www.example.com/ then,
when the link is clicked, the browser populates the Referer header with http: //www.wrox.com/
example.html .

However, as you discovered in Chapter 2, you can fake requests with any value you want. A
common spammer tactic is to send fake requests to blogs, which blindly display referrer information
for their pages. These fake requests contain a Referer header that points to the Web site they are
promoting. The blog software will then blithely trust the information and display it.

Matt’s Mail Script is a popular Perl email script developed by Matt Wright and used on many
Common Gateway Interface (CGI) driven Web sites. Initially, when the Internet was generally free
of mischief, the script was simple and took its input from form fields. As you have discovered, this is
not wise any more. Spammers realized how Matt’s script worked (the source is freely available). The
spammers wrote software that looked for the script, and then created requests that sent out spam
emails through it. When this abuse started, one of the lines of defense was checking the Referer
header, on the assumption that a real Web request would contain a Referer Header. This worked
for a short while, until spammers changed their spam software to fake the Referer header to be
the Web site hosting the script, which then passed the checks, at which point the spam flowed
through the script again.

ASP.NET also includes defenses against a header-splitting attack. This attack happens when an
attacker includes extra carriage return or line feed characters in a request, which can cause

an application to return two responses, the second being under the control of the attacker. This
protection is enabled by default, but can be disabled by setting the enableHeaderChecking
attribute on the httpRuntime element in your application’s web.config fle. This setting is there for
the rare occasions when your application may need to use header continuation and performs its own
checks — a very unlikely scenario. So leave header checking turned on!

NOTES You can read more about the details of this attack in Amit Klein’s
whitepaper “Divide and Conquer: HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics,” available from http: / /www
.packetstormsecurity.org/papers/general /whitepaper_httpresponse
.pdf.

This should demonstrate to you that every input should be validated.

A Checklist for Query Strings, Forms, Events, and Browser Information | 85

A CHECKLIST FOR QUERY STRINGS, FORMS, EVENTS,
AND BROWSER INFORMATION

The following is a checklist you should follow when deciding how to deal with query strings, forms,
events, and browser information:

>

Never change state via @eT request. —The HTTP specifications state that GET requests
must not change state.

Do not use direct, sequential object references—Always use indirect object references
(such as a GUID) to refer to resources on a Web server. Direct object references can be
changed easily to allow attackers to access objects they should not be able to see. Check that
the current user is authorized to see the object requested.

Do not use hidden formdids to hold sensitive information, unless they are properly pro-
tected. —Remember that form fields (and query strings) can be manipulated by attackers.

Add a CSRF token to your forms—This will allow you to check that the request came
from your own Web site.

Check the Request type when checking if a request is a postback—This will protect you
from ASP.NET considering query string-driven requests as potential postbacks.

Do not disable event validation, but do not rely on it—Registering for event validation is
optional for controls. Always check conditions within postback events.

Do not rely orequest headers. —Combine the steps outlined in this chapter with the
validation checklist provided in Chapter 3.

Controlling Information

Once your application has accepted data from the user (even if it is only a request to display
a page), your application must generate output. You have already seen how to validate
input, and how to sanitize it for output. However, there are unexpected ways that sensitive
information about your application can be leaked.

In this chapter, you will learn about the following:

> How information can be leaked with7iewstate

> How to secure and encrypviewState

> Strategies and approaches for error logging

> Strategies and approaches for securing sessions

> Other ways information can become exposed
CONTROLLING VIEWSTATE

One of the defning features of ASP.NET Web forms is the event model, which turns actions
(such as clicking a button, or changing the selected item in a list) into server-side events, an
approach that matches Windows Forms programming. To support this model, Microsoft
introduced viewState , a mechanism whereby pages maintain their state over multiple client
requests and responses. When a property is set on a control, the control can save the property
value into its control’s state. Each control’s state is added into the viewState for a page,
which is sent by the server and returned by the client as a hidden form field such as the
following;:

input type="hidden" name="__ VIEWSTATE" id="__VIEWSTATE"

value="/wEPDWUKMTcwMzQ5NDcyMGQYAQUeX19Db250cm9sclI1lcXVpcmVQb3NOQmFjaltlevof
FggFL2NObDAWJIE1haW5QbGFjZUhvbGR1ciRFZG10b3TkQ29 tbWVudFIhZG1vQnV0dGIuBS9jdGww

88 | CHAPTER5 CONTROLLING INFORMATION

MCRNYW1uUGxhY2VIb2xkZXIKkRWRpAGIyJENVBW1 1bnRSYWRpb0J1dHRvbgUUY3RsMDAKTWFpblBs
YWN1SG9sZGVyJEVkaXRveiRUaHT 1 YWRSYWRpb0J1dHRvbgUUY3RsMDAKTWFpb1Bs YWN1SGISZGVyY
JEVkaXRvciRUaHI1YWRSYWRpb0J1dHRvbgUuY3RsMDAKTWFpblBs YWN1SG9sZGVyJEVkaXRvei
ROZXdUaHJ1YWRDaGVja0JveAUoY3RsMDAKTWFpblBsYWN1SGIsZGVyJEVkaXRveiRCb2R5VGVAd
EJveAVRY3RsMDAKTWFpblBsYWN1SGIsZGVyJEVkaXRveiRjAGwwMFINYW1uUGxhY2VIb2xkZXJ £
RWRpdG9IYX0JvZH1UZXh0Q0m947ZG1hbGInT3B1lbmVyBVhijdGwwMCRNYW1uUGxhY2VIb2xkzXIk
RWRpdG9YJIGNObDAWX01haW5QbGF j ZUhvbGR1c19FZG10b3JI fQmIkeVR1eHRChb3hkaWFsb2dPc
GVuzZXJEV21uzG93" />

ViewState has advantages and disadvantages. As controls are added to a page, viewState grows
and can add kilobytes to a page size, affecting the speed at which a page is loaded and rendered by
a client. However, without it, the ASP.NET cannot support its event-driven programming model,
and controls would lose their properties when a page is reloaded. viewstate is a property bag. You
can utilize it yourself to store values you want passed around with every request by accessing the
ViewState property in the Page class, as shown in the following example

ViewState["MyExample"] = "wrox";

Looking at thisviewState example, you may think that the data is encrypted because you cannot
read it, and it does not appear to contain any property names or values. But it is not. It’s obviously
not clear text. Instead, in the previous example, the viewstate value is Base64encoded. Base64
encoding takes binary data and translates it into a text-based representation in base 64 (the
numerical system with 64 as its base). This is a system chosen for historical reasons — 64 characters
was the maximum subset that most character sets shared and that were printable. This combination
leaves a Base64 encoding data stream unlikely to be modified accidentally in transit through legacy
systems such as email.

You can perceive encoding like translating from one representation to another, or like taking a
word in English and translating it into French. If someone who does not know any French sees my
translated (or encoded) text, he or she may assume that it is meaningless, or gibberish. However,
someone who knows both English and French will be able to undo the translation and decode the
French version into English.

Encryption works differently. It takes values and locks them using a key that only key holders can
open. While it may be possible for observers to know what type of lock is used, they cannot view
the encrypted data without having the key in their possession.

BecauseviewState is only encoded by default, it can be decoded by any other application that
understands how to decode Base64 data. Fritz Onion (one of the founders of Pluralsight, an
organization delivering technical content and training, and a frequent contributor to ASP.NET
conferences and MSDN magazine) has written such a utility, called ViewState Decoder (Figure 5-1).
It is available from http: //www.pluralsight.com/community/media/p/51688.aspx .

Controlling ViewState | 89

— ——— — —

+ ViewStateDecoder 2 == EE=s
File Help

Enter the URL of the page who's viewstate you would iewState

like to decode

Tree Displ
hitp:/Aocalhost 43428, View State,/Defaut aspe roe Disly | o Tt | Rl
(=R viewstate
7
ViewState string: - Pair
- String
|/wEP DwUKMADOTMAMT AwNABWAh4HXhhb XBsZQ U i 2049381004
Ed3JveGRIK7DKRyi SZFGOTIBVC30++USVoHGc= - Pair
- Araylist
[Indexed String
i eample
EJ- String
F——
ControlState
Tree Display | Raw XML
- controlstate

Character count: 76

FIGURE 5-1: ViewState Decoder

As you can see from Figure 5-1, ViewState Decoder makes it simple to take a ViewState feld from
a Web page and determine the values that are stored inside. If you are using ViewState to store

sensitive information in your application, an attacker could use this tool to find that sensitive data
inside.

NOTE The Open Web Security Application Project (OWSAP) refers to the
vulnerabilities in this chapter as information leakage. Applications can uninten-

tionally expose information that an attacker can use to learn about the internals
of an application.

Validating ViewState

If you know how viewstate is encoded, you may assume that you can create a completely fake
viewState value and submit it to an ASP.NET page. This would enable you to add, change, or
delete values stored within the page. This kind of modification could potentially allow an attacker
to take over the behavior of controls in the server-side code.

90 | CHAPTER5 CONTROLLING INFORMATION

J

However, by default ASP.NET signs viewState after it is created, so it cannot be changed. It

does this by hashing the viewstate values, and creating a unique value from the contents of the
viewstate. This hash value is then encrypted with a key that is stored on the server, and then the
encrypted hash is placed into the viewState. (Hashing and encryption are explained in more detail
in Chapter 6.) During postback processing, ASP.NET validates the viewstate by decrypting the
embedded hash and recomputes the hash value based on the viewstate contents. If the hashes

do not match, then the viewstate must have been tampered with, and aviewStateException is
thrown. Although an attacker could send a fake viewstate with his or her own hash value, the
attacker cannot know the encryption key the server uses. And, so, when ASP.NET attempts to
decrypt the attacker’s viewstate, it will fail and throw an exception.

This validation mechanism can cause two common problems. The first problem arises when you
must host your application on multiple machines. By default, the encryption key (or machine key)
used to encrypt the validation hash is randomly generated on machine If a request containing
ViewState is sent by machine A to the browser, but is received by machine B, then the decryption
will fail because machine A and machine B have different machine keys. Secondly, if your
application restarts, the machine key value is regenerated; which means that if a page is sent

to a client browser, then the application restarts before the page is submitted and the sent back
ViewState will fail.

While it is possible to disable viewstate validation by setting the EnableviewStateMac attribute
to false on a page or for the entire application, this is obviously a bad idea, because it allows
attackers to tamper with data in the viewstate. Instead, you should ensure that each machine has
an identical machine key. The machine key is configured via the machinekey> element in your
web.config fle. By default, this element is set in the global web.config fle stored in the NET
framework installation directory and contains the following settings:

machineKey
validationKey="AutoGenerate, IsolateApps"
decryptionKey="AutoGenerate, IsolateApps"
validation="SHAl"
decryption="AUTO" />

To set the keys manually, you must create new random numbers and encode them in hexadecimal
format. Listing 5-1 shows a program that generates a suitable machinekey element that you can
then paste into your web.config fle.

LISTING8: Generating a Machine Key

Available for

download on i .
Wioxcom using System;

using System.Security.Cryptography;
using System.Text;

namespace Wrox.BeginningSecureASPNET.MachineKeyGenerator
{
class Program
{
static readonly RNGCryptoServiceProvider rngProvider =
new RNGCryptoServiceProvider () ;

Controlling ViewState | 91

static void Main(string[] args)
{

StringBuilder machineKeyElement = new StringBuilder();

machineKeyElement .Append ("<machineKey\n") ;
machineKeyElement .Append (" validationKey=\"");
machineKeyElement .Append (CreateRandomKey (64)) ;
machineKeyElement.Append ("\"\n") ;

machineKeyElement .Append (" decryptionKey=\"");
machineKeyElement .Append (CreateRandomKey (32)) ;
machineKeyElement.Append ("\"\n") ;

machineKeyElement .Append (" validation=\"SHAI\"\n");
machineKeyElement .Append (" decryption=\"AES\"\n");
machineKeyElement .Append ("/>") ;

Console.WriteLine (machineKeyElement.ToString()) ;

static string CreateRandomKey (int length)

{
byte[] randomKey = new byte[length];
rngProvider.GetBytes (randomKey) ;
string hex = BitConverter.ToString (randomKey) ;
return hex.Replace("-", "");

OrcsWeb, a well-known ASP.NET hosting provider, has a Web page that also generates machinekey
elements. However, given that the machine key is used for encryption and validation, getting a
cryptographic key from a third party presents a risk. You don’t know if the third party will save it.
However, since the OrcsWeb system does not know what Web site you will use, the key on the risk
is minimal. You can use it at http://www.orcsweb.com/articles/aspnetmachinekey.aspx .

If you are using IIS7 you can generate a machine key from the IIS Manager by clicking the

Machine Key icon in the ASP.NET features list. To generate a fixed key, click the “Generate Keys”
link in the action panel. Using the IIS Manager you can set a machine key for all sites on a machine,
or for individual sites you select in the Sites folder in the Connections panel. The machinekey
element is not just used for validation of viewstate. The validationKey is also used for signing
authentication tickets in forms-based authentication, as well as role manager and anonymous
identification. The decryptionkey is used to encrypt and decrypt the authentication ticket, and
optionally encrypt and decrypt viewState .

Because of the importance of themachinekey element, it should be kept secret. If you use a machine
key in development, you should use a new machine key on your production systems, available

only to the server administrators. It should also be protected by encrypting it within web.config .
Chapter 6 provides instructions on how to do this.

Encrypting ViewState

As you’ve learned, viewState is not encrypted by default. viewState encryption can be requested
by a control, by an entire page, or on an application-wide basis. You can also disable viewstate

92 | CHAPTER5 CONTROLLING INFORMATION

encryption even if a control requests it, but obviously this is not recommended. Once ViewState is
encrypted, programs such as viewStateDecoder will not be able to look at its contents.

To enforce viewState encryption for an entire application, you should set the
viewStateEncryptionMode atUﬁbuteOnthepagesekﬂnenthlweb.config,asshownlhera

pages ... viewStateEncryptionMode="Always" ... />

You can programmatically request encryption on a per-page basis by calling
Page.RegisterRequiresViewStateEncryption () ; within your code, or by setting the
ViewStateEncryptionMode attribute in the page directive, as shown here:

%@ Page Language="C#" ... ViewStateEncryptionMode="Always" %>

Encrypting viewState will increase the time it takes for a page to render and respond, as well as
affect the size of the hidden form field. Be sure to run tests to see if any increases are acceptable in
terms of load time and bandwidth.

Protecting Against ViewState OneClick Attacks

ViewState validation ensures that no one can tamper with the contents, while optional viewstate
encryption ensures that no one can view the data. However, one vulnerability still remains — replay
attacks. A replay attack occurs when an attacker takes a valid viewState from a previous request
and sends it at a later point, or under the context of another user.

Often, aviewState replay attack can be used in the flavor of Cross Site Request Forgery (CSRF)
called a one-click attack , where a form is submitted via JavaScript to a vulnerable page. To do
this, the attacker needs a valid viewstate that can be acquired by simply browsing to a page.
Unfortunately, because viewstate does not expire, the attack form will work forever.

In light of this attack method, ASP.NET provides the viewStateUserKey property as a way to lock
ViewState to a specific user or session. If this property is set, ASP.NET uses this value as part of
the key for integrity checking and validation. Generally, this value is set to either the username of a
currently authenticated user, or, if this is not available, the session identifier for the current session.
This effectively locks down the viewstate so that it cannot be in another session or by another
user. Using the session identifier also adds an implicit expiration time to the viewState when

the session expires. You should be aware of this if your forms take a long time to complete. If the
session expires as a user is submitting the form then an exception will occur, because the viewstate
will no longer be valid.

Because theviewStateUserKey must be set before the viewstate is created (or loaded) and parsed,
it must be set early in the page lifecycle, within the 1nit event. Generally, you will want to apply

a ViewStateUserKey across every single page. There are several possible approaches, including
responding to the PreRequestHandlerExecute event inglobal.asax, or by using a custom base
class for all your pages. The author’s personal preference is to respond to the event in global.asax ,
as shown in Listing 5-2.

Controlling ViewState | 93

LISTING®: Setting a ViewState User Key in global.asax

Q

%@ Application Language="C#" %>
script runat="server">

void Application_PreRequestHandlerExecute
(object sender, EventArgs e)

{

HttpContext context = HttpContext.Current;

// Check we are actually in a webforms page.

Page page = context.Handler as Page;

if (page != null)

{
// Use the authenticated user if one is available,
// so as the user key does not expire over
// application recycles.
if (context.Request.IsAuthenticated)
{

page.ViewStateUserKey = context.User.Identity.Name;
}
else
{
page.ViewStateUserKey = context.Session.SessionID;

}

}

}
{script>

This approach has the advantage of not needing to remember the base class for every page, and not
having to remember to never change it. If you prefer to use a custom pass class, you can use the
onInit event of the page lifecycle, as shown in Listing 5-3.

LISTINGB: Setting a ViewState User Key in a Base Class

using System;
using System.Web.UI;

public class ProtectedViewStatePage : Page

{
protected override void OnInit (EventArgs e)

{
if (Request.IsAuthenticated)

{
ViewStateUserKey = User.Identity.Name;

}
else

{

ViewStateUserKey = Session.SessionID;

continues

94 | CHAPTER5 CONTROLLING INFORMATION

LISTING 5-3 (continued)

base.OnInit (e);

You should then change the class your pages inherit from to the new base class you created. If you
do not use code behind, then you can set the base class application-wide by using the pages>
element in web.config, as shown here:

system.web>
pages pageBaseType="ProtectedViewStatePage">
</pages>

</system.web>

Removing ViewState from the Client Page

Another mechanism to protect ViewState is to remove it altogether from the client page.
ASP.NET 2.0 introduced the PageStatePersister class to accomplish this. By default, pages
use HiddenFieldPageStatePersister, which stores ViewState in a hidden feld in the HTML
page. However, ASP.NET also provides SessionPageStatePersister, which places viewstate
within session state. To switch the persistence mechanism that a page uses, you override the
PageStatePersister property on a page, as shown here:

protected override PageStatePersister PageStatePersister
{

get

{

return new SessionPageStatePersister (this);

If you add this property declaration to your page, you may wonder why the viewstate hidden field
still appears in the HTML your page produces. If you use the viewStateDecoder utility, you will
see that the viewState in your page no longer holds keys and values, but rather a reference that the
SessionPageStatePersister uses to retrieve the values from its memory.

You can confgure SessionPageStatePersister on a per-page basis, or within a common base
class for all pages. By default, SessionPageStatePersister keeps nine savedviewStates for a
session. If the maximum number is reached, the oldest Viewstate is discarded. This limits the
maximum number of windows that users can open in your application. You can increase the
number of ViewState s saved within the sessionPagestate> configuration element. However, this
obviously will affect the available memory on your Web server.

Disabling Browser Caching

You should be aware of browser caching —which means that a browser may cache a page on
the local hard drive. This cached copy of a page is vulnerable to inspection by spyware or other

Error Handling and Logging | 95

software running on a user’s machine. If this risk is a concern you can mitigate against this by
turning caching off for a page, using the outputcache directive on a page, as shown here:

%@ OutputCache Location="None" VaryByParam="None" %>
Alternatively, you can accomplish this by adding the following code to your Page_t.0ad event:
Response.Cache.SetCacheability (HttpCacheability.NoCache) ;

Always disable caching for pages that contain sensitive data.

ERROR HANDLING AND LOGGING

Error messages are probably one of the most useful places to find information when attacking a Web
application. Sending unexpected data to an application can cause internal errors which gives away
clues about how an application works, and provides information about further routes of attack —
all leading to the discovery of vulnerabilities. Errors in .NET are represented as exceptions. When
an exception occurs, ASP.NET can expose the internal workings of your application through an
error page, such the one shown in Figure 5-2.

i erior e occared whils sstabiEhing & connectian 16 The server. When connecling o 501 56 Windows Intarmat Txplarer S]
) - 18 - NS

Wl €4 | 8 An emor has ocourred whibe establiching 8 conne...

Gooale 2

v @ v b Gests -

Server Error in '/Bad Exceptions' Application.

An error has occurred while establishing a connection to the server. When connecting to SQL Server 2005, this failure may be
caused by the fact that under the default settings SQL Server does not allow remote connections. (provider: Named Pipes
Provider, error: 40 - Could not open a connection to SQL Server)

‘e umast wek request ‘e simck race far ‘and whare &

Bscaptian Detaile: 5 2 ioficaphon: An s Ras Wihas, g Saress 2004, tha ke by the e Sarent
e net atow [rm— . wira. 30 Sarver]

Suuree Errar:

Line 141 SalConnection connection = mew SalConnectiond

Line 15: Configuratiantanager. Commect ionStr ings ["exnsn] slatabuse"). Connect ianstring)

Line 16: ot

Line 171 4i B

Line 18: Haietionetosn:

Soures Fila:

e Lina: 16

Stack Tracn:

[SqlCxception (ONEDLIL904): An error has sccuered while estahlishing a cosmection to the server.
Systes. Oats, S1CTHant. SalIntarnnlConnectica, DnError (501 Excaption sxeesticn
Systes. Data, SaiCTient. TdsParser. "

. Sa1CT4ant. TdeParear. Connect (Servar [nfa . sal i

. SqlCT1ent. SqlInternalCon oging

men ze«ncmnn 0 SOL Server 2005, this failure may be cawsed by the fact that
. Boslean braskConnectisa) +80011

stateOhy) +1B6

. Beslean ignoraSniDpenTimetet, Inted timsrfupics, Boaless sncrypt, Boolasn

, String , Boolean 1g menut, Int64 timerfumire, SaiConnection owning
-5a1CTient . Sl IntarnalConnect icaTds. LoginkoFai lover (5tring hott, String d, Bsalean . SalConnsction owni . SalCeansctinonsering
. Sq1CT1ent. SqlInternalCannectisaTds. OpenLoginEnliseiSqlCennection £q1C String , Bsslemm

- SQICTient. SalInternaICommectiowTds. . ctor (DbConnectionPomlISentity SOMnTity, STIComectiondtring CONMeCTiontptions, OBIECT prov
. £31C11ent. SnlConnectioAFacteey, CreateConnection{DhConnecticalptions oprions, Object DicCes poal,
. ProviderBase, DConnectioaf actory, CreatePoo] sdConnectica(KBConnecTion omningConnection, DECONNECTionRool pool, (RCOmECtionOptions ootions) =30

rInfo, String metatsword, SqlConn
eumingC +3

derl Dby .0 onnectisn 424
. BhConnect iondes, DhCannect icn 3 66
derl Db L GetC, onnectis 404
. BreciderBase. DbConnect ionEaetery, i an b i " rion) K1

. Presi derBase. DbCon) nClesed, ouw:unnemnn(mumwn cuterConnection, DbCamnertisaFactory connectionfactery) +105
Systes. Oata, SS1CTient. SqlConnect ian. Opea() +

Default.Page Load(Obsect sender, Eventirgs e) in exy Studia \Chapter S\Sasples\Bad Exceptions\Default. aspy. cs:16
System. web, Uti1.Callinelper bventarghunctionCaller (IntPtr Fp, Obiect o, Chiect t, Eventargs) s18
Systes. Web, U1, CalbiE!

. Cal sender, Eventirgs e} 433
Systes. web, UL, Centrol. OnLoad(Eventhrgs) 98

Systes. Web, UL Centrol. LoadRecursivel) +47
System. web, UL, Fage, i ineTudestag

+ Boolean includeStageedfterdsynehuint) +1456

Wersion Informathon: Meresan NET framswonk Viesss 30 50727 164, ASP RET Version 2 0 50727 1634 -

one & Intiimet | Protected Mode: O s

FIGURE 5-2: The default ASP.NET application error page

96

CHAPTER5 CONTROLLING INFORMATION

This error page is full of useful information for developers and, unfortunately, for attackers. You
can see the exception thrown, the source around the line that caused the error, a stack trace of your
application, the version of ASP.NET running on the Web server, and the location of the files on the
disk drive hosting the Web application. This is obviously a problem. Luckily, ASP.NET, by default,

only serves this error to requests originating from local connections. Remote users will see an error
page like the one shown in Figure 5-3.

@& Runtime Error - Windows Internet Explorer

===
<[4] x| [Googte e

uu \(e_, hitp://lacalhost:49494/Bad%20Exceptions/Default.aspx

v e Igﬁunnma Error Iil

- v & v [Page ¥ {3 Tools v

Server Error in '/Bad Exceptions' Application.

Runtime Error

Description: An application error occurred on the server. The current custom error settings for this application prevent the detais of the application error from being viewed

Details: To enable the details of this specific error message to be viewable on the local server machine, please create a <customErrors> tag within a "web.config” configuration file located in the root

directory of the current web application. This <customErrors= tag should then have its "mode” attribute set to "RemoteQnly”. To enable the details to be viewable on remote machines, please set "mode” to
"Off".

<1-- Web.Config Configuration File -

<configuration>
<system.web>
zcustomErrors mode="RemoteOnly" />
</system.webx
«</configuration»

Notes: The current error page you are seeing can be replaced by a custom error page by modifying the

stiribute of the applcat
custom error page URL.

s <customErrors= configuration tag to point to a

<1-- Web.Config Configuration File -

<configurations
<system.web>
<customErrors mode="0On" defaultRedirect="mycustompage. htm" />

</system.web>
</configuration=

Done

@ Internet| Protected Mode: On H100% ~

FIGURE 5-3: The default remote ASP.NET application error page

The default error page indicates to an attacker that an exception occurred (by telling the attacker
that there was an Application Error) and also indicates that the application is an ASP.NET
application. You should avoid using the default error pages because of this.

Error pages are controlled by the customErrors configuration element in web.config :

system.web>
<customErrors mode="On"

defaultRedirect="~/error.aspx">
</customErrors>

£system.web>

In the previous confguration sample, the defaultRedirectAttribute has been set to error.aspx .
This configuration means all errors get sent to error.aspx in the root of your Web application,

Error Handling and Logging | 97

allowing you to present a custom error page to your users. Often, you want to present different error
pages, depending on the errors shown. For example, the following configuration would redirect
Page Not Found errors to not found. aspx :

system.web>
<customErrors mode="On"
defaultRedirect="~/error.aspx">
<error statusCode="404"
redirect="~/notfound.aspx" />
</customErrors>
£system.web>

This is a simple approach to error messages, but it does have the following two downsides:

> The client Web browser is forwarded to the error page via a 302 Object Moved HTTP
response code. This is easily detected by scanning tools that will often flag this as a
potential error condition.

> The conditions that lead to the error cannot be easily accessed, so you have no record of
what caused the application error, which possibly leaves errors undiscovered.

Often, developers are tempted to debug errors on a live Web server by turning on full error messages
so that they can view them from their remote workstations. However, there is no way to limit the
full error page to particular machines, and switching on the full error page means anyone who
causes an error to occur will see a page like that shown in Figure 5-2.

NOTE OWASRP refers to the vulnerabilities such as these as improper error
handling, which is a type of information leakage.

Improving Your Error Handling

ASP.NET provides error events you can respond to at both a page level (Page_Error) and
application level (aApplication_Error). By intercepting errors via the error events, you can discover
information about the error itself by accessing Server.GetLastError (which returns the last
exception thrown) and via HttpContext (extra state information contained within the page class).

Following is an example of handling errors within a page class, using an Error class defined
elsewhere in the project to provide logging functions:

public partial class MyPage : System.Web.UI.Page
{

protected void Page_Error (object sender, EventArgs e)
{

// Log Errors.

Exception ex = Server.GetLastError();

98 | CHAPTERS5 CONTROLLING INFORMATION

Error.Log (ex) ;
}
Following is an example of handling errors within global.asax :

%@ Application Language="C#" %>
script runat="server">
void Application_Error (object sender, EventArgs e)
{
// Log Errors.
Exception ex = Server.GetLastError();
Error.Log (ex) ;
}

£script>

Of course, these error handlers are a last resort. You should still be wrapping your code in try /
catch blocks and reacting accordingly.

If you implemented the error logging as shown in the example code snippets, your errors would be
logged twice because of error bubbling. ASP.NET will first look for a page-level error handler, then
an application-wide error handler, and, finally, if neither of these error handlers is found, the default
error handling will kick into play. However, it is up to an error handler to either cancel the error by
calling server.ClearError, or indicate to ASP.NET that it has handled it by redirecting to another
page via Server.Transfer. The latter is preferable to Response.Redirect because no redirection
response will be sent to the client, thwarting software that watches for these messages to detect errors.

Watching for Special Exceptions

ASP.NET throws specific exceptions that may indicate a security problem, such as request validation
failures. It’s a good idea to log these differently from “normal” exceptions (for example, sending

a text message to a mobile phone, or logging to the event log with specific error-code monitoring
software that can detect and respond to the threat). Table 5-1 provides some examples of exceptions
that indicate a potential threat.

TABLE 5-1: Exceptions That Indicate a Potential Threat

EXCEPTION WHEN OCCURS

HttpRequestValidationException Occurs when request validation (see Chapter 3) is on,
and potentially threatening characters are sent with a
request.

ArgumentException Occurs when event validation fails (see Chapter 4),
indicating an attempt to fire an event that is not valid for
a page.

ViewStateException Occurs when an invalid viewState has been sent (as

previously described in this chapter)

Error Handling and Logging | 99

Each of the exceptions shown in Table 5-1 should be specifically handled within your application-
wide error handler in global.asax . Any thirdparty software you install may provide specialized
exceptions for potential security problems. Obviously, these should be handled in the same way as
the exceptions shown in Table 5-1.

It is possible for unhandled exceptions to cause your entire application to crash if they occur outside
of a page request. An example might be found in a background worker thread, or within the
garbage collector. Microsoft recommends tha